• Title/Summary/Keyword: Collision of Ship

Search Result 493, Processing Time 0.026 seconds

Analysis of Ship Collision Behavior of Pile Supported Structure (파일지지 구조물의 선박 충돌거동에 대한 해석)

  • Bae, Yong Gwi;Lee, Seong Lo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.323-330
    • /
    • 2008
  • The ship collision analysis of steel pile group as protection system of bridge in navigable waterways was performed to analyze the structural characteristics of protective structure during ship collision. The analysis encompassed finite element modeling of ship and pile, modeling of material non-linearity, hard impact analysis, displacement-based analysis and soft impact analysis for collision scenarios. Through the analysis of hard impact with a rigid wall, impact load for each collision type of ship bow was estimated. In the displacement-based analysis the estimate of energy which protection system can absorb within its maximum horizontal clearance so as to secure bridge pier from vessel contact during collision was performed. Soft impact analysis for various collision scenarios was conducted and the collision behaviors of vessel and pile-supported protection system were reviewed for the design of protection system. The understanding of the energy dissipation mechanism of pile supported structure and colliding vessel would give us the optimized design of protective structure.

Behaviour Analyses of Ocean Structure Due to Ship Collision (선박의 충돌로 인한 해양구조물의 거동 해석)

  • 이호영
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.103-107
    • /
    • 2001
  • When ship claps against the ocean structure sited at shallow water, the time simulation of motion responses of dolphin-moored ocean structure is presented. The equatien of motion based on Cummin's theory of impulse responses are employed, and solved in time domain by using the Newmark $\beta$ method. The added mass and damping coefficients involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The impact forces due to ship collision are modeled as two method, and those are elastic and non-elastic collisions. The mooring forces for dolphin systems of scean structure are considered as linear spring system.

  • PDF

Automatic Ship Collision Avoidance in Narrow Channels through Curvilinear Coordinate Transformation (곡선좌표계 변환에 기반한 협수로에서 선박 자율 충돌회피)

  • Cho, Yonghoon;Kim, Jonghwi;Kim, Jinwhan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.191-197
    • /
    • 2021
  • This study addresses autonomous ship collision avoidance in narrow channels using curvilinear coordinates. Navigation in narrow channels or fairways is known to be much more difficult and challenging compared with navigation in the open sea. It is not straightforward to apply the existing collision avoidance framework designed for use in the open sea to collision avoidance in narrow channels due to the complexity of the problem. In this study, to generalize the autonomous navigation procedure for collision avoidance in narrow channels, we introduce a curvilinear coordinate system for collision-free path planning using a parametric curve, B-spline. To demonstrate the feasibility of the proposed algorithm, ship traffic simulations were performed and the results are presented.

Fragility Assessment of Offshore Wind Turbine by Ship Collision (선박충돌에 의한 해상풍력발전기의 취약도 평가)

  • Cho, Byung Il;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.236-243
    • /
    • 2013
  • Offshore wind turbines has to be proved against accidental events such as ship collision. In this study, ship collision fragility analysis of offshore wind turbine is done. Dynamic collision analysis is accomplished by considering soil foundation interaction and fluid structure interaction. Uncertainties due to ship weight and speed, angle are also considered. By analyzing dynamic response of offshore wind turbine, fragility curves are obtained for different damage levels. They can be used for restricting boat speed around the wind turbine and allowable size of the boat for inspection and for other purposes. Results of the fragility, it was confirmed fragility of collision speed of bulk ship of 30,000DWT and 850ton barge ship.

Ground Improvement under Ship Collision Protection of Myodo-Gangyang Suspension Bridge Concerning of Sedimental Condition in Gyangyang Bay (광양만 퇴적이력을 고려한 묘도-광양간 현수교 충돌방지공 하부 지반보강)

  • Chang, Yong-Chai;Yoon, Tae-Seob;Kim, Kyung-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.660-671
    • /
    • 2008
  • The suspension bridge between Myodo and Gwangyang is located in the main navigation channel to Gwangyang Harbor. So, there is need for the collision protection against large vessels. As ship collision protection, artificial island with concrete block quay wall is planned. The risk analysis and non-linear numerical analysis are introduced to consider the ship collision effects. In the Gwangyang bay area, there are some different sedimental conditions in clayey stratums. For a desirable design, we classify into four zones and 2 layers in each zone, and then determine suitable soil properties considering these zones. As a ground improvement under artificial island, DCM and SCP methods are Planned.

  • PDF

A Study on the Application of Variable Safe-Guard Ring for the Ship Collision Avoidance in Shallow Water (천수역에서 충돌회피를 위한 가변안전경계영역 적용에 관한 연구)

  • Yang, Hyoung-Seon;Ahn, Young-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • The ship's maneuverability is the important factor to avoid ship's collisions. The ship's maneuverability is usually measured in a deep water, and the turning ability is decreased and the course stability is improved in a shallow water. The variation of the turning ability could cause the risk of collision. In this paper, we proposes application technique of Variable Safe-Guard Ring to consider the shallow water effect and to be simple to estimate the grade of collision risk simultaneously. Through the mathematical simulation, the availability of new method was varified. Therefore this method is expected enough to support a maneuver for collision avoidance.

  • PDF

Distance Identification for Maximum Change in Ship Collision Risk through a Coast Guard Patrol Ship Experiment (해양경찰 함정 실험을 통한 선박충돌 위험도의 변화가 최대인 거리 식별에 관한 연구)

  • Kim, Dae-Sik;Yim, Jung Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.447-454
    • /
    • 2017
  • Using two large coast guard ships at sea, we created four encounter situations ($000^{\circ}$, $045^{\circ}$, $090^{\circ}$, $135^{\circ}$) with high possibility of collision, from 3 NM up to 0.25 NM. As relative distance was gradually decreased, the subjects were measured at 0.25 NM intervals and perceived ship collision risk (PSCR) was determined by looking at the opponent ship. Characteristics were statistically analyzed using the obtained data. The purpose of this study was to analyze the characteristics of collision risk values obtained from twelve intervals, from 3 NM to 0.25 NM relative to encounter situations by curve fitting with appropriate polynomials, to determine the distance from which the change in perceived collision risk is greatest. As a result, an optimal regression equation for each distance interval was derived from each analysis direction. The greatest variation in average collision risk value was over the range 1.25 ~ 1 NM, and the collision risk value was largest at 1 NM. The maximum change in perceived collision risk was at 1 NM. These results can contribute to preventive guidelines to minimize human error in close proximity situations with a high probability of ship collision.

Ship Collision Analysis of Structures (구조물의 선박충돌 해석)

  • Lee, Seong-Lo;Bae, Yong-Gwi;Lee, Gye-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.87-96
    • /
    • 2006
  • A ship collision analysis by finite element method is performed considering the effects of mass and speed of ship and material and shape of structures to analyze the dynamic characteristics by ship collision. From this analysis, collision load-time history and damage of ship and structures are obtained. In this study, results of finite element analysis are compared with previous studies in USA, Japan and some countries of Europe. Dynamic characteristics are different from each other according to interaction between ship and structures. It seems that there are lots of factor to have effects on the ship-structures interaction. Because little information is available on the behavior of the inelastic deformation of materials and structures during the type of dynamic impacts associated with vessel impact, assumptions based on experience and sound engineering practice should be substituted. Therefore more researches on the interaction between ship and structures are required.

Collision risk assessment based on the vulnerability of marine accidents using fuzzy logic

  • Hu, Yancai;Park, Gyei-Kark
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.541-551
    • /
    • 2020
  • Based on the trend, there have been numerous researches analysing the ship collision risk. However, in this scope, the navigational conditions and external environment are ignored or incompletely considered in training or/and real situation. It has been identified as a significant limitation in the navigational collision risk assessment. Therefore, a novel algorithm of the ship navigational collision risk solving system has been proposed based on basic collision risk and vulnerabilities of marine accidents. The vulnerability can increase the possibility of marine collision accidents. The factors of vulnerabilities including bad weather, tidal currents, accidents prone area, traffic congestion, operator fatigue and fishing boat operating area are involved in the fuzzy reasoning engines to evaluate the navigational conditions and environment. Fuzzy logic is employed to reason basic collision risk using Distance to Closest Point of Approach (DCPA) and Time of Closest Point of Approach (TCPA) and the degree of vulnerability in the specific coastal waterways. Analytical Hierarchy Process (AHP) method is used to obtain the integration of vulnerabilities. In this paper, vulnerability factors have been proposed to improve the collision risk assessment especially for non-SOLAS ships such as coastal operating ships and fishing vessels in practice. Simulation is implemented to validate the practicability of the designed navigational collision risk solving system.

Structural Design of Double Hull Tanker in Collision by Rigid Colliding Ship (강체 충돌선의 충돌을 고려한 이중선체 유조선의 구조설계)

  • 이상갑;박수송
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.99-111
    • /
    • 1999
  • The object of this study is to get the superior double hull structure to its crashworthiness against collision comparing absorbed energy capacities of its various types with each other, varying material properties, collision positions and velocities, and structural arrangements such as double hull width, web and stringer spaces, etc. Local absorbed energy capacities, failure behaviors and damage extents of their members are also considered during collision in addition to the estimations of their global ones. This paper describes a series of numerical simulations of collisions between DWT 45,000 oil tanker(struck ship) and DWT 10,500 rigid one(striking ships) using Hydrocode LS/DYNA3D. Collisions are assumed to occur at the middle of struck ship with striking one moving at right angle to its centerline. The following remarks were obtained through this study: More flexible the double hull structure is, much superior its crashworthiness against collision is. The increment of double hull width does not give much influence than other factors do. The exact use of material property such as failure strain is also important on the numerical simulation of collision.

  • PDF