• Title/Summary/Keyword: Collision control algorithm

Search Result 317, Processing Time 0.036 seconds

Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN (무선랜에서의 실시간 및 비실시간 트래픽 스케줄링)

  • Lee, Ju-Hee;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

Path Tracking Motion Control using Fuzzy Inference for a Parking-Assist System (퍼지 추론을 이용한 주차지원 시스템의 경로추종 운동제어)

  • Kim, Seung-Ki;Chang, Hyo-Whan;Kim, Chang-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • A parking-assist system is defined that a driver adjusts vehicle velocity through brake pedal operation and parking-assist system controls the motion of the vehicle to follow a collision-free path. In this study, a motion control algorithm using Fuzzy inference is proposed to track a maneuvering clothoid parallel path. Simulations are performed under SIMULINK environments using MATLAB and CarSim for a vehicle model. As the vehicle model in MATLAB a bicycle model is used including lateral dynamics. The simulation results show that the path tracking performance is satisfactory under various driving and initial conditions.

Wireless LAN based Teleoperation of Mobile Robots (무선 LAN 기반 이동로봇의 원격제어)

  • Kang Hee-Jun;Suh Young-Soo;Ro Young-Shick
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.264-268
    • /
    • 2006
  • In this paper, we construct the infrastructure with wireless LAN for the teleoperating system of mobile robots. For the stable teleoperating system, we develope an algorithm that measure communication time delay on real-time. We propose the force-reflected teleoperation method that control the stiffness of joystick according to VFH(Vector Field Histogram). Also, an obstacle avoidance method using VFH is presented for the mobile robot to move to the indicated direction without collision. Experiments are conducted to demonstrate the feasibility of the proposed methods.

Merging of Satellite Remote Sensing and Environmental Stress Model for Ensuring Marine Safety

  • Yang, Chan-Su;Park, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.645-652
    • /
    • 2003
  • A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. It lastly is shown that based on ship information extracted from JERS data, a qualitative evaluation method of environmental stress is introduced.

Use of the Delayed Time Fuzzy Controller for Autonomous Wheelchairs (지연시간 퍼지제어기를 이용한 자율 주행 휠체어)

  • Ryu, Yeong-Soon;Ga, Chun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2678-2686
    • /
    • 2002
  • A novel approach is developed for avoidance of obstacles in unknown environment. This paper proposes a new way of intelligent autonomous wheelchairs for the handicapped to move safely and comfortably. It is the objective of this paper to develop delayed time fuzzy control algorithms to deal with various obstacles. This new algorithm gives the benefit of the collision free movement in real time and optimal path to the moving target. The computer simulations and the experiments are demonstrated to the effect of the suggested control method.

Estimation of Tire-Road Friction Coefficient using Observers (관측기를 이용한 노면과 타이어 간의 마찰계수 추정)

  • 정태영;이경수;송철기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.722-728
    • /
    • 1998
  • In this paper real-time estimation methods for identifying the tire-road friction coefficient are presented. Taking advantage of the Magic Formula Tire Model, the similarity technique and the specific model for the vehicle dynamics, a reduced order observer/filtered-regressor-based method is proposed. The Proposed method is evaluated on simulations of a full-vehicle model with an eight state nonlinear vehicle/transmission model and nonlinear suspension model. It has been shown through simulations that it is possible to estimate the tire-road friction from measurements of engine rpm, transmission output speed and wheel speeds using the proposed identification method. The proposed method can be used as a useful option as a part of vehicle collision warning/avoidance systems and will be useful in the implementation of a warning algorithm since the tire-road friction can be estimated only using RPM sensors.

  • PDF

A Study on Obstacle Avoid Method and Synchronization of multi chaotic robot for Robot Formation Control based on Chaotic Theory (카오스 이론에 기반한 포메이션 제어를 위한 다중 카오스 로봇의 장해물 회피 및 동기화에 관한 연구)

  • Bae, Young-Chul;Park, Jong-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.534-540
    • /
    • 2010
  • In this paper, we propose the mathematical algorithm for collision avoidance between the robots and for the obstacle avoidance during the operation of the several chaotic robotics. For the useful formation control and as one of the method to provide command structure of communication between the robots, we also propose the synchronization method between the robotic system and confirmed the result with the computer simulation.

Ship Manoeuvring Performance Experiments Using a Free Running Model Ship

  • Im, Nam-Kyun;Seo, Jeong-Ho
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.603-608
    • /
    • 2009
  • In this paper, a 3m-class free running model ship will be introduced with its manoeuvring performance experiments. The results of turning circle test and zig-zag test will be explained. The developed system are equipped with GPS, main control computer, wireless LAN, IMU (Inertial Measurement Unit), self-propulsion propeller and driving rudder. Its motion can be controlled by RC (Radio Control) and wireless LAN from land based center. Automatic navigation is also available by pre-programmed algorithm. The trajectory of navigation can be acquired by GPS and it provides us with important data for ship's motion control experiments. The results of manoeuvring performance experiment have shown that the developed free running model ship can be used to verify the test of turning circle and zig-zag. For next step, other experimental researches such as ship collision avoidance system and automatic berthing can be considered in the future.

A Study on the Improvement of Joystick Control Method for the Disabled (장애자를 위한 조이스틱 제어기법 향상에 관한 연구)

  • Hong, J.P.;Lee, E.H.;Kim, B.S.;Chang, W.S.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.103-106
    • /
    • 1996
  • In this paper, we proposed the design and algorithm of force reflection joystick which control mobile robot as a rehabilitation assistance system. The disabled persons are poor at joystick control because of hand vibration and clumsiness in operating it. These problems bring tasks which concerned with operator's safety So there is required technique which prevent collision with wall or obstacles. One of these solution is force reflection joystick which disturb that robot is closed to the wall. To confirm this way, we experimented and simulated with force reflection joystick which attached torque controller.

  • PDF

Statistical Analysis of Receding Horizon Particle Swarm Optimization for Multi-Robot Formation Control (다개체 로봇 편대 제어를 위한 이동 구간 입자 군집 최적화 알고리즘의 통계적 성능 분석)

  • Lee, Seung-Mok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.115-120
    • /
    • 2019
  • In this paper, we present the results of the performance statistical analysis of the multi-robot formation control based on receding horizon particle swarm optimization (RHPSO). The formation control problem of multi-robot system can be defined as a constrained nonlinear optimization problem when considering collision avoidance between robots. In general, the constrained nonlinear optimization problem has a problem that it takes a long time to find the optimal solution. The RHPSO algorithm was proposed to quickly find a suboptimal solution to the optimization problem of multi-robot formation control. The computational complexity of the RHPSO increases as the number of candidate solutions and generations increases. Therefore, it is important to find a suboptimal solution that can be used for real-time control with minimal candidate solutions and generations. In this paper, we compared the formation error according to the number of candidate solutions and the number of generations. Through numerical simulations under various conditions, the results are analyzed statistically and the minimum number of candidate solutions and the minimum number of generations of the RHPSO algorithm are derived within the allowable control error.