• Title/Summary/Keyword: Collision Dynamics

Search Result 178, Processing Time 0.023 seconds

Two-dimensional numerical experiment considering cohort size and wood jam characteristic on driftwood (유목의 유입규모와 군집특성을 고려하는 2차원 수치모의 실험)

  • Kang, Taeun;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.407-418
    • /
    • 2021
  • In this study, the two-dimensional flow model, Nays2DH, and driftwood dynamics model were combined to analyze the flow and driftwood behavior depending on the characteristics of the inflow of driftwood and the length of the driftwood stem. In particular, the Dashpot-spring model was added to the driftwood dynamics model to simulate the collision motion of the driftwood, and the wood jam characteristics by the collision of the driftwood were compared. As a result of the simulation, the pass rate of the obstacle section, the travel distance of wood jam, and the mean position of the wood pieces were respondent sensitively by the length of the driftwood stem, but the cohort size of the driftwood supply was insignificant excepting for the pass rate. Through this study, we could understand the interaction between hydraulic structures and driftwood, and through this, it is believed that it will be helpful in establishing a durable maintenance plan for hydraulic structures by predicting the transport and jam formation phenomena of driftwood in advance.

Investigation of Stereo-dynamic Properties for the Reaction H+HLi by Quasi-classical Trajectory Approach

  • Wang, Yuliang;Zhang, Jinchun;Jiang, Yanlan;Wang, Kun;Zhou, Mingyu;Liang, Xiaorui
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2873-2877
    • /
    • 2012
  • Quasi-classical trajectory (QCT) calculations of H+HLi reaction have been carried out on a new potential energy surface of the ground state reported by Prudente et al. [Chem. Phys. Lett. 2009, 474, 18]. The four polarization-dependent differential cross sections have been carried out in the center of mass (CM) frame at various collision energies. The reaction probability for the depletion channel has been studied over a wide collision energy range. It has been found that the collision energy decreases remarkably reaction probability, which shows the expected behavior of the title reaction belonging to an exothermic barrierless reaction. The results are in good agreement with previous RMP results. The P(${\theta}_r$), P(${\phi}_r$) and P(${\theta}_r,\;{\phi}_r$) distributions, the k-k'-j' correlation and the angular distribution of product rotational vectors are presented in the form of polar plots. The average rotational alignment factor <$P_2(j{\prime}{\cdot}k)$> as a function of collision energy is also calculated. The results indicate that the collision energy has a great influence on the polarization of the product rotational angular momentum vector j'.

Vibrational Relaxation and Bond Dissociation of Excited Methylpyrazine in the Collision with HF

  • Oh, Hee-Gyun;Ree, Jong-Baik;Lee, Sang-Kwon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1641-1647
    • /
    • 2006
  • Vibrational relaxation and competitive C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited methylpyrazine in the collision with HF have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited methylpyrazine upon collision is not large and it increases slowly with increasing total vibrational energy content between 20,000 and 45,000 $cm^{-1}$. Above the energy content of 45,000 $cm^{-1}$, however, energy loss decreases. The temperature dependence of energy loss is negligible between 200 and 400 K, but above 45,000 $cm^{-1}$ the energy loss increases as the temperature is raised. Energy transfer to or from the excited methyl C-H bond occurs in strong collisions with HF, that is, relatively large amount of translational energy is transferred in a single step. On the other hand, energy transfer to the ring C-H bond occurs in a series of small steps. When the total energy content ET of methylpyrazine is sufficiently high, either or both C-H bonds can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability. The dissociation of the ring C-H bond is not the result of the direct intermolecular energy flow from the direct collision between the ring C-H and HF but the result of the intramolecular flow of energy from the methyl group to the ring C-H stretch.

Development of a coordinated control algorithm using steering torque overlay and differential braking for rear-side collision avoidance (측후방 충돌 회피를 위한 조향 보조 토크 및 차등 제동 분배 제어 알고리즘 개발)

  • Lee, Junyung;Kim, Dongwook;Yi, Kyongsu;Yoo, Hyunjae;Chong, Hyokjin;Ko, Bongchul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2013
  • This paper describes a coordinated control algorithm for rear-side collision avoidance. In order to assist driver actively and increase driver's safety, the proposed coordinated control algorithm is designed to combine lateral control using a steering torque overlay by Motor Driven Power Steering (MDPS) and differential braking by Vehicle Stability Control (VSC). The main objective of a combined control strategy is twofold. The one is to prevent the collision between the subject vehicle and approaching vehicle in the adjacent lanes. The other is to limit actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort. In order to achieve these goals, the Lyapunov theory and LMI optimization methods has been employed. The proposed coordinated control algorithm for rear-side collision avoidance has been evaluated via simulation using CarSim and MATLAB/Simulink.

Intramolecular Energy Flow and Bond Dissociation in the Collision between Vibrationally Excited Toluene and HF

  • Ree, Jong-baik;Kim, Sung-Hee;Lee, Taeck-Hong;Kim, Yu-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.495-502
    • /
    • 2006
  • Intramolecular energy flow and C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited toluene in the collision with HF have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited toluene upon collision is not large and it increases slowly with increasing total vibrational energy content between 20,000 and 45,000 $cm ^{-1}$. Above the energy content of 45,000 $cm ^{-1}$, however, energy loss decreases. Furthermore, in the highly excited toluene, toluene gains energy from incident HF. The temperature dependence of energy loss is negligible between 200 and 400 K. Energy transfer to or from the excited methyl C-H bond occurs in strong collisions with HF transferring relatively large amount of its translational energy (>> $k_BT$) in a single step, whereas energy transfer to the ring C-H bond occurs in a series of small steps. When the total energy content $E_T$ of toluene is sufficiently high, either C-H bond can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability. The dissociation of the ring C-H bond is not the result of the intermolecular energy flow from the direct collision between the ring C-H and HF but the intramolecular flow of energy from the methyl group to the ring C-H stretch. The C-$H_{ring}$${\cdot}{\cdot}{\cdot}$HF interaction is not important in transferring energy and in turn bond dissociation.

Analysis of vehicle central line invasion accidents using simulation (시뮬레이션을 이용한 차량의 중앙선 침범 사고 해석)

  • Han, Chang-Pyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.507-513
    • /
    • 2021
  • This study examined the final stop position and posture of both vehicles, the damaged part of the vehicle, the road surface, the specifications of the vehicle, and the angle of impact, centering on the case of a collision in which no surface trace was found. As a result of the simulation, the impact velocity of an SM5 and Lexus was 131 km/h and 74 km/h, respectively, and the impact angle of the SM5 and Lexus was 0.91° and -161.07°, respectively. The cause of the accident was that the SM5 passed through the intersection exceeding the maximum speed limit of 61 km/h and entered the Lexus' left turn lane. Lexus collided during the evacuation to avoid the collision. The collision trajectory error rate of the simulation was approximately 1.4%. Of the subjective experience of accident investigators, the collision dynamics and vehicle engineering aspects and simulations were actively utilized to provide close-to-fact cause identification.

Folding Analysis of Paper Structure and Estimation of Optimal Collision Conditions for Reversal (종이구조물의 접기해석과 반전을 위한 최적충돌조건의 산정)

  • Gye-Hee Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.213-220
    • /
    • 2023
  • This paper presents a model simulating the folding process and collision dynamics of "ddakji", a traditional Korean game played using paper tiles (which are also referred to as ddakji). The model uses two A4 sheets as the base materials for ddakji. The folding process involves a series of boundary conditions that transform the wing part of the paper structure into a twisted configuration. A rigid plate boundary condition is also adopted for squeezing, establishing the shape and stress state of the game-ready ddakji through dynamic relaxation analysis. The gaming process analysis involves a forced displacement of the striking ddakji to a predetermined collision position. Collision analysis then follows at a given speed, with the objective of overturning the struck ddakji--a winning condition. A genetic algorithm-based optimization analysis identifies the optimal collision conditions that result in the overturning of the struck ddakji. For efficiency, the collision analysis is divided into two stages, with the second stage carried out only if the first stage predicts a possible overturn. The fitness function for the genetic algorithm during the first stage is the direction cosine of the struck ddakji, whereas in the second stage, it is the inverse of the speed, thus targeting the lowest overall collision speed. Consequently, this analysis provides optimal collision conditions for various compression thicknesses.

Development of Vehicle Side Collision Avoidance System with Virtual Driving Environments (가상주행환경에서의 측면 충돌 방지시스템 개발)

  • Yoon, Moon Young;Choi, Jung Kwang;Jung, Jae Eup;Boo, Kwang Seok;Kim, Heung Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.164-170
    • /
    • 2013
  • The latest vehicle yields a superior safety and reduction of driving burden by monitoring the driving state of vehicle and its environment with various sensors. To detect other vehicles and objects of the rear left and right-side blind spot area of driver, provide the information about a existence of objects inside the blind spot, and give a signal to avoid collision, this study proposes the intelligent outside rear-view mirror system. This study proposes SILS system with PreScan and Matlab/Simulink to verify practical applicability of developed BSDS. PreScan yields realistic driving environments and road conditions and vehicle model dynamics and collision warning is controlled by Matlab/Simulink.

DYNAMICS ON AN INVARIANT SET OF A TWO-DIMENSIONAL AREA-PRESERVING PIECEWISE LINEAR MAP

  • Lee, Donggyu;Lee, Dongjin;Choi, Hyunje;Jo, Sungbae
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.583-597
    • /
    • 2014
  • In this paper, we study an area-preserving piecewise linear map with the feature of dangerous border collision bifurcations. Using this map, we study dynamical properties occurred in the invariant set, specially related to the boundary of KAM-tori, and the existence and stabilities of periodic orbits. The result shows that elliptic regions having periodic orbits and chaotic region can be divided by smooth curve, which is an unexpected result occurred in area preserving smooth dynamical systems.

Mesoscopic Solvent Dynamics in a Real Dimensional System

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1893-1897
    • /
    • 2004
  • Hydrodynamic simulations of mesoscopic solvent have been performed by multi-particle collision algorithm in a real dimensional system without and with the random shifting of the grid. A systematic conversion of the dimensionless units to a real dimensional system was confirmed by jump rates of solvent particles. Speed distributions of solvent particles obtained from the simulations agreed very well with the Maxwell-Boltzmann distributions. Solvent viscosities obtained from the simulations and from the conversion of units are exactly the same which confirmed the correct conversion of the units once again. The calculation of the friction coefficient of a massive Brownian particle in a mesoscopic solvent as a function of Brownian particle diameter was examined as an example.