• Title/Summary/Keyword: Collision Dynamics

Search Result 179, Processing Time 0.022 seconds

Failure Analysis of Condenser Fin Tubes of Package Type Air Conditioner for Navy Vessel (함정용 패키지 에어콘 응축기 핀튜브(Cu-Ni 70/30) 누설파괴 원인 분석)

  • Park, Hyoung Hun;Hwang, Yang Jin;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.439-446
    • /
    • 2016
  • In 2015, a fin tube (Cu-Ni 70/30 alloy) of package type heat exchanger for navy vessel was perforated through the wall which led to refrigerant leakage. This failure occurred after only one year since its installation. In this study, cause of the failure was determined based on available documents, metallographic studies and computational fluid dynamics simulation conducted on this fin tube. The results showed that dimensional gap between inserted plastic tube and inside wall of fin tube is the cause of the swirling turbulent stream of sea water. As a result of combination of swirling turbulence and continuing collision of hard solid particles in sea water, erosion corrosion has begun at the end of inserted plastic tube area. Crevice corrosion followed later in the crevice between the outer wall of plastic tube and inner wall of fin tube. It was found that other remaining tubes also showed the same corrosion phenomena. Thorough inspection and prompt replacement will have to be accomplished for the fin tubes of the same model heat exchanger.

Base Structure Design of Laptop HDD for Anti-Shock Performance (내충격 성능 향상을 위한 랩탑 하드디스크의 베이스 설계)

  • Lim, Seung-Ho;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su;Seol, Woong;Kim, Kyung-Tae
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.2
    • /
    • pp.76-81
    • /
    • 2009
  • Mobile devices have become an important part of daily life. This is especially true of laptop PCs, which are portable enough to be used almost anywhere. Laptop PCs, however, cannot be nomadic if each component is not robust enough to endure rugged laptop operating environment. Generally, external shock makes collision on head-disk interface and damage to read-write performance. To minimize the likelihood of failure, shock analysis must be incorporated into the design of hard disk drive in laptop. This research explores the structure modification of laptop HDD base, for improving shock performance using finite element analysis which considers the flexibility of whole HDD structure. FE model is verified by modal test and finely tuned. Then we obtained the transmitted acceleration of spindle and pivot and the relative displacement between disk and slider head as shock response. Based on shock simulation, the structural dynamics modification is performed and the primary design parameters are extracted.

  • PDF

Development of a Motion Simulator for Portable Type Welding Robot Based on Adaptive Control (적응 제어 기반 Portable 용접 로봇 시뮬레이터 개발)

  • Ku, Nam-Kug;Ha, Sol;Roh, Myung-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.400-409
    • /
    • 2012
  • It is not easy to know the accurate mass and mass moment of inertia of robot. Because of this uncertainty, error may exist when we control the robot based on the inaccurate mass information. Moreover the properties of the portable robot can change during its operation. Therefore we developed the motion simulator based on the adaptive control. First, the computed torque control was carried out in order to minimize an error between target angles and real angles. The computed torque control is based on the equation of robot motion, which is derived from the Lagrange-Euler equation. To minimize the error between the real model and the approximated model, the adaptive control was carried out. During this simulation, the interference check was also carried out. The interference check verifies that the robot can move successfully without any collision.

Formation of Hydroxyl Radical from the Hydrogen Chemisorbed Silicon Surface by Incident Oxygen Atoms

  • Ree, Jong-Baik;Chang, Kyung-Soon;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.986-992
    • /
    • 2003
  • We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH, particularly in its vibrational motion, in the gas-surface reaction O(g) + H(ad)/Si → OH(g) + Si on the basis of the collision-induced Eley-Rideal mechanism. The reaction probability of the OH formation increases linearly with initial excitation of the HSi vibration. The translational and vibrational motions share most of the energy when the H-Si vibration is initially in the ground state. But, when the initial excitation increases, the vibrational energy of OH rises accordingly, while the energies shared by other motions vary only slightly. The product vibrational excitation is significant and the population distribution is inverted. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations. The amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

A Numerical Study on Passenger Evacuation in a Subway Station in Case of Fire Occurrence (화재 발생 지하철 역사에서의 여객 대피 해석에 관한 연구)

  • Kim, Chi-Gyeom;Lee, Sung-Won;Hur, Nahm-Keon;Nam, Seong-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.509-514
    • /
    • 2010
  • A numerical simulation of passenger evacuation in a subway station was performed by coupling the passenger flow analysis and the fire simulation. The algorithm of the passenger flow analysis was based on a DEM (Discrete Element Method) using the potential map of the direction vector for each passenger. This algorithm was improved in the present study as to use finer grid smaller than a passenger in order to resolve detailed geometry of the station and to resolve the behavior of passengers in the bottleneck at the ticket gate considering the collision of passengers to a wall or with other passengers. In the fire simulation, the CO distribution predicted by using CFD was used to take into account the effect of toxic gases on the passengers' mobility. The methodology proposed in the present study could be used in designing safer subway station in case of fire occurrence.

INTERPARTICLE POTENTIAL OF 10 NANOMETER TITANIUM NANOPARTICLES IN LIQUID SODIUM: THEORETICAL APPROACH

  • KIM, SOO JAE;PARK, GUNYEOP;PARK, HYUN SUN;KIM, MOO HWAN;BAEK, JEHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.662-668
    • /
    • 2015
  • A suspension of titanium nanoparticles (Ti NPs) in liquid sodium (Na) has been proposed as a method to mitigate the violent sodium-water reaction (SWR). The interparticle potential between Ti NPs in liquid Na may play a significant role in the agglomeration of NPs on the reaction surface and in the bulk liquid Na, since the potential contributes to a reduction in the long-term dispersion stability. For the effective control of the SWR with NPs, a physical understanding of the molecular dynamics of NPs in liquid Na is key. Therefore in this study, the nonretarded Van der Waals model and the solvation potential model are employed to analyze the interparticle potential. The ab initio calculation reveals that a strong repulsive force driven by the solvation potential exceeds the interparticle attraction and predicts the agglomeration energy required for two 10-nm Ti NPs to be $4{\times}10^{-17}J$. The collision theory suggests that Ti NPs can be effective suppressors of the SWR due to the high energy barrier that prevents significant agglomeration of Ti NPs in quiescent liquid Na.

Dynamics of Gas-phase Hydrogen Atom Reaction with Chemisorbed Hydrogen Atoms on a Silicon Surface

  • 임선희;이종백;김유항
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1136-1144
    • /
    • 1999
  • The collision-induced reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon (001)-(2×1) surface is studied by use of the classical trajectory approach. The model is based on reaction zone atoms interacting with a finite number of primary system silicon atoms, which then are coupled to the heat bath, i.e., the bulk solid phase. The potential energy of the Hads‥Hgas interaction is the primary driver of the reaction, and in all reactive collisions, there is an efficient flow of energy from this interaction to the Hads-Si bond. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability shows the maximum near 700K as the gas temperature increases, but it is nearly independent of the surface temperature up to 700 K. Over the surface temperature range of 0-700 K and gas temperature range of 300 to 2500 K, the reaction probability lies at about 0.1. The reaction energy available for the product states is small, and most of this energy is carried away by the desorbing H2 in its translational and vibrational motions. The Langevin equation is used to consider energy exchange between the reaction zone and the bulk solid phase.

Looking through the Mass-to-Charge Ratio: Past, Present and Future Perspectives

  • Shin, Seung Koo
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.126-130
    • /
    • 2021
  • The mass spectrometry (MS) provides the mass-to-charge ratios of atoms, molecules, stable/metastable complexes, and their fragments. I have taken a long journey with MS to address outstanding issues and problems by experiments and theory and gain insights into underlying principles in chemistry. By looking through the mass-to-charge ratio, I have studied thermochemical problems in silicon chemistry, the infrared multiphoton dissociation spectroscopy of organometallic intermediates, unimolecular dissociations of halotoluene radical cations, and the kinetics of association/dissociation of alkali halide triple ions with Lewis bases. Various MS platforms have been used to characterize non-covalent interactions between porphyrins and fullerenes and those between the group IIB ions and trioctylchalcogenides, and to examine the binding of the group IA, IIA and porphyrin ions to G-quadruplex DNA. Recently, I have focused on mass-balanced H/D isotope dipeptide tags for MS-based quantitative proteomics, a simple chemical modification method for MS-based lipase assay, and the kinetics and dynamics of energy-variable collision-induced dissociation of chemically modified peptides. Now, I see an important role of MS in global issues in the post-COVID era, as the society demands high standards for indoor air quality to contain the airborne-pathogen transmission as well as in-situ monitoring and tracking of carbon emissions to reduce global warming.

EVOLUTION OF THE SPIN OF LATE-TYPE GALAXIES CAUSED BY GALAXY-GALAXY INTERACTIONS

  • Hwang, Jeong-Sun;Park, Changbom;Nam, Soo-hyeon;Chung, Haeun
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.2
    • /
    • pp.71-88
    • /
    • 2021
  • We use N-body/hydrodynamic simulations to study the evolution of the spin of a Milky Way-like galaxy through interactions. We perform a controlled experiment of co-planar galaxy-galaxy encounters and study the evolution of disk spins of interacting galaxies. Specifically, we consider cases where the late-type target galaxy encounters an equally massive companion galaxy, which has either a late or an early-type morphology, with a closest approach distance of about 50 kpc, in prograde or retrograde sense. By examining the time change of the circular velocity of the disk material of the target galaxy from each case, we find that the target galaxy tends to lose the spin through prograde collisions but hardly through retrograde collisions, regardless of the companion galaxy type. The decrease of the spin results mainly from the deflection of the orbit of the disk material by tidal disruption. Although there is some disk material which gains the circular velocity through hydrodynamic as well as gravitational interactions or by transferring material from the companion galaxy, it turns out that the amount of the material is generally insufficient to increase the overall galactic spin under the conditions we set. We find that the spin angular momentum of the target galaxy disk decreases by 15-20% after a prograde collision. We conclude that the accumulated effects of galaxy-galaxy interactions will play an important role in determining the total angular momentum of late-type galaxies.

Active Vibration Control of Three-Stage Mast of Reach Truck (리치트럭의 3단 마스트 흔들림 능동 제어)

  • Moon, Hyeon Mo;Yoo, Kwang-Seon;Ahn, Young-Chul;Mah, Pyeong-Ho;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • The reach truck, which is mainly used in warehouses, is required to have high-mast to improve its working efficiency and space utilization. The high-mast takes advantage of more vertical space but severe vibrations are easily generated at the end of the high-mast. These vibrations may cause a collision or misplacement of loading location at work. In this study, the vibration characteristics of a three-stage high-mast of a reach truck are analyzed, and an active vibration controller verified through a similar experiment is designed to reduce this vibration. A similar experiment for reach truck mast verifies the performance of the active vibration controller. By applying an active vibration controller designed for a real reach truck, the operations of the reach truck are made more efficient through the reduction of the vibration amplitude.