DOI QR코드

DOI QR Code

EVOLUTION OF THE SPIN OF LATE-TYPE GALAXIES CAUSED BY GALAXY-GALAXY INTERACTIONS

  • Received : 2020.11.06
  • Accepted : 2021.03.31
  • Published : 2021.04.30

Abstract

We use N-body/hydrodynamic simulations to study the evolution of the spin of a Milky Way-like galaxy through interactions. We perform a controlled experiment of co-planar galaxy-galaxy encounters and study the evolution of disk spins of interacting galaxies. Specifically, we consider cases where the late-type target galaxy encounters an equally massive companion galaxy, which has either a late or an early-type morphology, with a closest approach distance of about 50 kpc, in prograde or retrograde sense. By examining the time change of the circular velocity of the disk material of the target galaxy from each case, we find that the target galaxy tends to lose the spin through prograde collisions but hardly through retrograde collisions, regardless of the companion galaxy type. The decrease of the spin results mainly from the deflection of the orbit of the disk material by tidal disruption. Although there is some disk material which gains the circular velocity through hydrodynamic as well as gravitational interactions or by transferring material from the companion galaxy, it turns out that the amount of the material is generally insufficient to increase the overall galactic spin under the conditions we set. We find that the spin angular momentum of the target galaxy disk decreases by 15-20% after a prograde collision. We conclude that the accumulated effects of galaxy-galaxy interactions will play an important role in determining the total angular momentum of late-type galaxies.

Keywords

References

  1. Anderson, M. E., & Bregman, J. N. 2010, Do Hot Halos Around Galaxies Contain the Missing Baryons?, ApJ, 714, 320 https://doi.org/10.1088/0004-637X/714/1/320
  2. Barnes, J. E. 2011, ZENO: N-body and SPH Simulation Codes, Astrophysics Source Code Library, ascl:1102.027
  3. Barnes, J. E., & Hibbard, J. E. 2009, Identikit 1: A Modeling Tool for Interacting Disk Galaxies, AJ, 137, 3071 https://doi.org/10.1088/0004-6256/137/2/3071
  4. Barnes, J., & Hut, P. 1986, A Hierarchical O(N log N) Force-calculation Algorithm, Nature, 324, 446 https://doi.org/10.1038/324446a0
  5. Brook, C. B., Stinson, G., Gibson, B. K., et al. 2012, Hierarchical Formation of Bulgeless Galaxies - II. Redistribution of Angular Momentum via Galactic Fountains, MNRAS, 419, 771 https://doi.org/10.1111/j.1365-2966.2011.19740.x
  6. Cappellari, M. 2016, Structure and Kinematics of Early-type Galaxies from Integral Field Spectroscopy, ARA&A, 54, 597 https://doi.org/10.1146/annurev-astro-082214-122432
  7. Casuso, E., & Beckman, J. E. 2015, On the Origin of the Angular Momentum of Galaxies: Cosmological Tidal Torques Supplemented by the Coriolis Force, MNRAS, 449, 2910 https://doi.org/10.1093/mnras/stv549
  8. Cervantes-Sodi, B., Hernandez, X., & Park, C. 2010, Clues on the Origin of Galactic Angular Momentum from Looking at Galaxy Pairs, MNRAS, 402, 1807 https://doi.org/10.1111/j.1365-2966.2009.16001.x
  9. Cloet-Osselaer, A., De Rijcke, S., Vandenbroucke, B., et al. 2014, Numerical Simulations of Dwarf Galaxy Merger Trees, MNRAS, 442, 2909 https://doi.org/10.1093/mnras/stu1071
  10. Codis, S., Pichon, C., & Pogosyan, D. 2015, Spin Alignments within the Cosmic Web: a Theory of Constrained Tidal Torques near Filaments, MNRAS, 452, 3369 https://doi.org/10.1093/mnras/stv1570
  11. Davis, A. J., & Natarajan, P. 2009, Angular Momentum and Clustering Properties of Early Dark Matter Haloes, MNRAS, 393, 1498 https://doi.org/10.1111/j.1365-2966.2008.14267.x
  12. Emsellem, E., Cappellari, M., Krajnovic, D., et al. 2011, The ATLAS3D Project - III. A Census of the Stellar Angular Momentum within the Effective Radius of Early-type Galaxies: Unveiling the Distribution of Fast and Slow Rotators, MNRAS, 414, 888 https://doi.org/10.1111/j.1365-2966.2011.18496.x
  13. Gingold R. A., & Monaghan J. J. 1977, Smoothed Particle Hydrodynamics: Theory and Application to Non-spherical Stars, MNRAS, 181, 375 https://doi.org/10.1093/mnras/181.3.375
  14. Graham, M. T., Cappellari, M., Li, H., et al. 2018, SDSS-IV MaNGA: Stellar Angular Momentum of about 2300 Galaxies: Unveiling the Bimodality of Massive Galaxy Properties, MNRAS, 477, 4711 https://doi.org/10.1093/mnras/sty504
  15. Hernquist, L. 1990, An Analytical Model for Spherical Galaxies and Bulges, ApJ, 356, 359 https://doi.org/10.1086/168845
  16. Hoyle, F. 1949, On the Cosmological Problem, MNRAS, 109, 365 https://doi.org/10.1093/mnras/109.3.365
  17. Hwang, J.-S., Park, C., & Choi, J.-H. 2013, The Initial Conditions and Evolution of Isolated Galaxy Models: Effects of the Hot Gas Halo, JKAS, 46, 1
  18. Hwang, J.-S., & Park, C. 2015, Effects of Hot Halo Gas on Star Formation and Mass Transfer During Distant Galaxy-Galaxy Encounters, ApJ, 805, 131 https://doi.org/10.1088/0004-637X/805/2/131
  19. Hwang, J.-S., Park, C., Banerjee, A., & Hwang, H. S. 2018, Evolution of Late-type Galaxies in a Cluster Environment: Effects of High-speed Multiple Encounters with Early-type Galaxies, ApJ, 856, 160 https://doi.org/10.3847/1538-4357/aab3ce
  20. Katz, N., Weinberg, D. H., & Hernquist, L. 1996, Cosmological Simulations with TreeSPH, ApJS, 105, 19 https://doi.org/10.1086/192305
  21. Kennicutt, R. C. Jr. 1998, The Global Schmidt Law in Star-forming Galaxies, ApJ, 498, 541 https://doi.org/10.1086/305588
  22. Kim, W.-T., Kim, Y., & Kim, J.-G. 2014, Nature of the Wiggle Instability of Galactic Spiral Shocks, ApJ, 789, 68 https://doi.org/10.1088/0004-637X/789/1/68
  23. Kim, Y., & Kim, W.-T. 2014, Gaseous Spiral Structure and Mass Drift in Spiral Galaxies, MNRAS, 440, 208 https://doi.org/10.1093/mnras/stu276
  24. Kubryk, M., Prantzos, N., & Athanassoula, E. 2015, Evolution of the Milky Way with Radial Motions of Stars and Gas. I. The Solar Neighbourhood and the Thin and Thick Disks, A&A, 580, 126
  25. Lee, J. C., Hwang, H. S., & Chung, H. 2018a, A Study of Environmental Effects on Galaxy Spin Using MaNGA Data, MNRAS, 477, 1567 https://doi.org/10.1093/mnras/sty729
  26. Lee, J., Kim, S., Jeong, H., et al. 2018b, Wobbling Galaxy Spin Axes in Dense Environments, ApJ, 864, 69 https://doi.org/10.3847/1538-4357/aad54e
  27. McMillan, P. J. 2011, Mass Models of the Milky Way, MNRAS, 414, 2446 https://doi.org/10.1111/j.1365-2966.2011.18564.x
  28. Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, The Structure of Cold Dark Matter Halos, ApJ, 462, 563 https://doi.org/10.1086/177173
  29. Oh, S. H., Kim, W.-T., & Lee, H. M. 2008, Physical Properties of Tidal Features in Interacting Disk Galaxies, ApJ, 683, 94 https://doi.org/10.1086/588184
  30. Peebles, P. J. E. 1969, Origin of the Angular Momentum of Galaxies, ApJ, 155, 393 https://doi.org/10.1086/149876
  31. Porciani, C., Dekel, A., & Hoffman, Y. 2002, Testing Tidal-Torque Theory - I. Spin Amplitude and Direction, MNRAS, 332, 325 https://doi.org/10.1046/j.1365-8711.2002.05305.x
  32. Roberts, W. W. 1969, Large-Scale Shock Formation in Spiral Galaxies and its Implications on Star Formation ApJ, 158, 123 https://doi.org/10.1086/150177
  33. Rodriguez-Gomez, V., Sales, L. V., Genel, S., et al. 2017, The Role of Mergers and Halo Spin in Shaping Galaxy Morphology, MNRAS, 467, 3083 https://doi.org/10.1093/mnras/stx305
  34. Springel, V. 2005, The Cosmological Simulation Code GADGET-2, MNRAS, 364, 1105 https://doi.org/10.1111/j.1365-2966.2005.09655.x
  35. Springel, V., & Hernquist, L. 2002, Cosmological Smoothed Particle Hydrodynamics Simulations: The Entropy Equation, MNRAS, 333, 649 https://doi.org/10.1046/j.1365-8711.2002.05445.x
  36. Springel, V., & Hernquist, L. 2003, Cosmological Smoothed Particle Hydrodynamics Simulations: A Hybrid Multiphase Model for Star Formation, MNRAS, 339, 289 https://doi.org/10.1046/j.1365-8711.2003.06206.x
  37. Tempel, E., Stoica, R. S., & Saar, E. 2013, Evidence for Spin Alignment of Spiral and Elliptical/S0 Galaxies in Filaments, MNRAS, 428, 1827 https://doi.org/10.1093/mnras/sts162
  38. von Neumann, J. 1951, in Monte Carlo Method. National Bureau of Standards Appl. Math. Ser. 12 (Washington, DC: US Government Printing Office), 36
  39. White, S. D. M. 1990, Angular Momentum Growth in Protogalaxies, ApJ, 286, 38 https://doi.org/10.1086/162573