• Title/Summary/Keyword: Colletotrichum

Search Result 539, Processing Time 0.241 seconds

Ginseng anthracnose in Korea Factors affecting primary inoculum, growth of the pathogen, disease development and control (인삼${\cdot}$탄저병에 관한 연구 전염원, 병원균의 생태, 발병요인 및 방제)

  • Chung Hoo-Sup;Bae Hyo-Won
    • Korean journal of applied entomology
    • /
    • v.18 no.1 s.38
    • /
    • pp.35-41
    • /
    • 1979
  • Four to $17\%$ of the seeds of ginseng (Panax ginseng Meyer) collected from seemingly healthy plants carried Colletotrichum panacicola Nakata et Takimoto whereas the seeds from the plants with anthracnose sympotoms carried $42\%$ of the same fungus. Prevalent organisms isolated other than C. panacicola from seeds of both kinds of plants were Fusarium, Alternaria, Phoma, Trichoderma and others, ana in that order on acidified potato sucrose agar. C. panacicola also was isolated from 18 months old herbarium specimens. The fungus in the infected tissues also survived during the Korean winter months either on the soil surface or in the soil at 10 and 30 em in depth. When conidial suspensions of C. panacicola were inoculated on detached ginseng leaves, anthracnose symptoms occurred from 25 to $35^{\circ}C$. No symptoms occurred at temperatures below $17^{\circ}C$. Direct sunlight increased significantly the number of anthracnose lesions over those obtained in leaves inoculated in darkness or in 400 lux of fluorescent light. The lesions decreased as age of the leaves increased or as the number of conidia applied decreased. Optimum temperature for mycelial growth and conidial formation of C. panacicola was $25^{\circ}C$. Optimum pH for the mycelial growth was at $pH\;2.8\~4.6$ while the most conidial formation occurred at $pH\;5.2\~5.8.$. When fungicides were applied in the field to ginseng plants with a conidial suspension of C. panacicola, the most effective control of the anthracnose disease was by spraying with difolatan, and followed by maneb, zineb, captan and phaltan; Bordeaux mixture and ferbam were significantly less effective but significantly better than the inoculated control plants.

  • PDF

Diversity of Endophytic Fungal Strains from Jeju Aquatic Plants (제주 수생식물에서 분리한 내생균류의 다양성)

  • Oh, Yoosun;Mun, Hye Yeon;Goh, Jaeduk;Chung, Namil
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.661-672
    • /
    • 2017
  • Endophytic fungi are present in host plants and contribute to resistance to biotic and abiotic stress. Aquatic plants are living in aquatic environment such as saltwater or freshwater and exposed more water stress than other land plants. In this study, we investigated 4 wetlands in Jeju and collected 11 aquatic plants. Exogenous microbes were removed by preprocessing of plants and endophytic fungal strains were isolated from the plants. We isolated 126 fungal strains from Namsaengi-pond, 22 fungal strains from Sujangdong-marsh, 44 fungal strains from Yongsu-reservoir and 32 fungal strains from Gangjeongcheon. The fungal strains were identified using internal transcribed spacer (ITS) region and analyzed the phylogeny and diversity. Endophytic fungi isolated from plants of Namsaengi-pond were classified to 30 genera, 19 families, 12 orders, 7 classes and 4 phyla. Endophytic fungi of Sujangdong-marsh were classified to 11 genera, 11 families, 6 orders, 5 classes and 4 phyla. Endophytic fungi of Yongsu-reservoir were classified to 13 genera, 12 families, 7 orders, 5 classes and 4 phyla. Endophytic fungi isolated from Gangjeongcheon were classified to 9 genera, 7 families, 5 orders, 2 classes and 1 phyla. Overall, they were divided 40 genera and Alternaria, Colletotrichum and Fusarium were isolated from 4 sites in common. By investigating the endophytic fungi in aquatic plants, it is for baseline data that determination of diversity and the ecological distribution of endophytic fungi.

Occurrence of Anthracnose Caused by Glomerella cingulata on Eucaly trees in Korea (Glomerella cingulata에 의한 유카리나무 탄저병 발생)

  • Kwon, Jin-Hyeuk;Jeong, Seon-Gi;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.211-215
    • /
    • 2007
  • Since 2003, anthracnose symptoms on Eucalyptus globulus were observed in farmer's field at Jisepo, Ilwoon-myon, Geoje city, Gyeongnam province, Korea. Typical symptoms of dark brown to black spot appeared on the leaves, twigs, and stems. Infected young trees were wilted, blighted and died eventually. The pathogen isolated from the typical symptom formed gray to dark gray colony on potato dextrose agar and showed optimum growth at $30^{\circ}C$. Conidia were single celled, colorless, cylindrical with obtuse ends, and $9{\sim}22{\times}3{\sim}6{\mu}m$ in size. Appressoria were dark brown, ovate to obovate, and $6{\sim}18{\times}4{\sim}10{\mu}m$ in size. Perithecia were black and globose in shape and $76{\times}274{\mu}m$ in size. Asci were clavate to cylindrical in shape and $42{\sim}76{\times}8{\sim}12{\mu}m$ in size. Ascospores were cylindrical, fusiform, slightly curved at the center, and $10{\sim}23{\times}4{\sim}6{\mu}m$ in size. On the basis of mycological characteristics and pathogenicity test on E. globulus, the pathogen was identified as Glomerella cingulata. This is the first report of the anthracnose on E, globulus caused by G. cingulata in Korea.

Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as Biological Control Agents against Sclerotinia Rot of Lettuce (상추 균핵병 생물적방제를 위한 Brevibacillus brevis B23과 Bacillus stearothermophilus B42의 선발)

  • Hwang, Ji-Young;Shim, Chang-Ki;Ryu, Kyung-Yeol;Choi, Du-Hoe;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.254-259
    • /
    • 2006
  • Bacillus spp. isolated from mushroom medium wastes were evaluated for their biocontrol potentials on control of Sclerotinia rot of lettuce. The Bacillus isolates were more effectively obtained from waste suspension when directly added into nutrient agar(NA) medium than plating on the agar medium. Totally 42 isolates obtained from the wastes B23 and B42 showed highest antifungal activity against eight fungal pathogens such as Sclerotinia sclerotiorum, Rhizoctonia solani, Pythium ultimum, Phytophthora capsici, Fusarium oxysporum, Colletotrichum gloeosporioides, Cladosporium cucumerinum, and Botrytis cinerea and B23 and B42 were finally selected for further studies. Optimal concentration of the isolates was $10ml(10^7cfu/ml)$ to suppress the Sclerotinia rot of lettuce. Supplements such as starch, glycerol, and egg-yolk successfully maintained the bacterial population for 30 days in vitro and increased bio-control potentials against the disease. The bacterial isolate B23 alone showed 72% control value, furthermore it presented 95% control value when supplemented with 0.2% of starch, glycerol, and egg-yolk. The promising Bacillus isolates B23 and B42 were identified as Brevibacillus brevis and Bacillus stearothermophillus, respectively, based on morphological and physiological characteristics according to API database.

Ultra-structural Observations of Colletotrichum orbiculare on Cucumber Leaves Pre-treated with Chlorella fusca (Chlorella fusca를 전처리한 오이 잎에서 오이탄저병균의 초미세 감염구조 관찰)

  • Lee, Yun Ju;Kim, Su Jeong;Jeun, Yong Chull
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.42-48
    • /
    • 2017
  • Chlorella is one of the microorganisms which can live autotrophically by their own photosynthesis. It was previously revealed that pre-treatment of Chlorella fusca caused a suppression of appressorium formation on the cucumber leaves after inoculation with Colletothrichum orbiculare. In this study, the ultrastructures of C. orbiculare on the cucumber leaves pretreated with C. fusca were observed using both scanning electron microscope (SEM) and transmission electron microscope (TEM). The SEM images revealed that most fungal conidia and hyphae were attached with lots of C. fusca cells. Also, the conidia could germinate but not form appressorium, which is necessary to penetrate into host tissue. These observations suggested that C. fusca adjoined to the fungus may play a role in suppression of the appressorium formation. On the other hand, the observations of TEM showed no remarkable cytological differences on the ultrastructures of the intracellular hyphae between in the pre-treated and untreated leaves. It seemed that the fungus could grow in the pre-treated plant tissues as in the untreated one. Based on these observations, it is suggested that the suppression of appressorium on the leaf surfaces by the C. fusca cells may be a main cause of the reduction of the anthracnose disease.

Antifungal Activities of Extracts from the Various Parts of the Genus Pinus Trees (소나무속(屬) 수목의 부위별 추출물의 항균활성)

  • Kim, Jong-Jin;Han, Chang-Hoon;Song, Hong-Keun
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.269-272
    • /
    • 2001
  • This study was carried out to investigate the antifungal activities of the extracts from various parts of three pinus species, P. densiflora, P. rigida and P. koraiensis to pathogenic fungus Collectotrichum gloeosporioides. The EtOAc fraction from the bark of P. koraiensis stem and root showed 98.8 and 100% of activity, respectively to the fungus. Median effective doses $(ED_{50})$ of above two fractions were 469 and 588 ${\mu}g/ml$, respectively in the bioassay with the fungus. $ED_{50}$ of the EtOAc fraction from the bark of P. koraiensis stem against Alternaria brassicicola and Fusarium oxysporum was 533 and 2,277 ${\mu}g/ml$, respectively. This means that the fraction was more sensitive to the C. gloeosporioides and A. brassicicola than the fungus F. oxysporum. The EtOAc fraction from the leaves of P. densiflord showed 39.6% of activity to C. gloeosporioides, but all the fractions from the leaves of two species showed no activity. The active compounds in the bark of P. koraiensis stem and root are being identified.

  • PDF

Development of Biofungicide Using Bacillus sp. KBC1004 for the Control of Anthracnose of Red Pepper (길항세균 Bacillus sp. KBC1004를 이용한 고추탄저병의 생물학적 방제제 개발)

  • Kang, Hoon-Serg;Kang, Jae-Gon;Park, Jeong-Chan;Lee, Young-Ui;Jeong, Yoon-Woo;Kim, Jeong-Jun;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.208-214
    • /
    • 2015
  • To develop an effective biopesticide to control pepper anthracnose disease, an isolate which showed strong inhibitory effect on the mycelial growth and conidial germination of Colletotrichum acutatum was selected among the antagonistic bacterial isolates collected from pepper grown soil. The bacterial isolate was identified as Bacillus sp. KBC1004 using 16S rRNA sequence analysis. The liquid culture of KBC1004 was freeze-dried and formulated as a wettable powder(WP). The wettable powder form of KBC1004 required at least 24 hours to activate and to inhibit the conidial germination of C. acutatum. In vitro bioassay using the detached green pepper fruits, biocontrol activity of the WP was not recognizable in simultaneous inoculation, but significant disease suppression was observed pre-treatment (24 hr) of the WP before pathogen inoculation. In field experiment, 4 times foliar applications of the 1/500 diluted wettable powder from the end of June showed great control efficacy similar to that of the chemical fungicide application. These results suggest that the formulated WP product could be an alternative mean to control of pepper anthracnose disease in environmentally friendly farming practices.

Characteristic of Microorganism and Effect Analysis of Spent Mushroom Compost after Cultivation of Button Mushroom, Agaricus bisporus (양송이버섯 재배 후 폐상퇴비의 효과 분석 및 분리 미생물의 특성)

  • Lee, Chan-Jung;Yun, Hyung-Sik;Cheong, Jong-Chun;Jhune, Chang-Sung;Kim, Seung-Hwan;Lee, Soon-Ja
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.123-131
    • /
    • 2009
  • This study was carried out to investigate the feasibility for the use of environmental-friendly materials and the effective recycling of spent mushroom compost(SMC) after cultivation of Button Mushroom, Agaricus bisporus. SMC of white button mushroom contained diverse microorganisms including fluorescent Pseudomonas sp., Bacillus sp., Tricoderma sp. and Actinomycetes. These isolates showed the extensive antifungal spectrum against plant pathogen. Among of the isolates, fungal pathogen such as Alternaria brassicicola, Phytophtora melonis, Phytophthora capsici and Colletotichum gloeosporioides strong showed strong antagonistic activity. 45.8% of the isolates were actively colonized on the pepper root and 5.8% showed rhizosphere competent of >$5{\times}10^2cfu\;root^{-1}$. The plant growth promotion ability of the collected isolates were tested in pot experiments using red pepper seedling. Among them, 62.7% showed pepper growth promoting ability and growth of pepper root showed superior to the control. The germination of pepper treated with aqueous extracts of non-harvest SMC completely inhibited at concentration of more than 33%. The sterilization of SMC resulted in higher inhibition of germination and early growth of pepper. These results suggest that spent mushroom compost(SMC) of Button Mushroom may have adequately the feasibility for the use with environmental-friendly materials.

Screening of Medicinal Plants with Antifungal Activity on Major Seedborne Disease (주요종자전염병 억제를 위한 항균성 약용식물탐색)

  • Paik, Su-Bong;Chung, Il-Min;Doh, Eun-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.4
    • /
    • pp.277-285
    • /
    • 1998
  • Antifungal activity on major seedborne diasease of crops was screened by the treatment of the extracts from 50 medicinal plants in vitro and in vivo. The extracts of garlic and taxus, Rheum undulatum, Achiranthes japonica, Glycyrrhiza uralensis, Oenothera lamar kiana treated with the blotting filter paper and water agar methods inhibited the growth of Pyricularia oryzae, Alternaria sesamicola, Colletotrichum gloeosporioides, and Alternaria brassicicola among the tested plants. Antifungal activities on infected seeds by soaking methods were shown even at the dilution of the extracts by 10 times. The activity was the highest in soaking seeds at $25^{\circ}C$ for 24 hours. The effect of plant extract on seed germination was not significant as compared with untreated seed. However, early growth of seedling was increased by the treatment of extracts. The extract of taxus slightly inhibited the seed germination of radish and chinese cabbage but those of Achirunthes japonica, Glycyrrhiza uralensis and Oenthfera lamarkiana showed severe damage on the seed germination and early growth of seedling.

  • PDF

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF