DOI QR코드

DOI QR Code

Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as Biological Control Agents against Sclerotinia Rot of Lettuce

상추 균핵병 생물적방제를 위한 Brevibacillus brevis B23과 Bacillus stearothermophilus B42의 선발

  • Hwang, Ji-Young (Organic Farming Technology Division, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Shim, Chang-Ki (Organic Farming Technology Division, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Ryu, Kyung-Yeol (Organic Farming Technology Division, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Choi, Du-Hoe (Organic Farming Technology Division, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Jee, Hyeong-Jin (Organic Farming Technology Division, National Institute of Agricultural Science and Technology, Rural Development Administration)
  • 황지영 (농촌진흥청 농업과학기술원 친환경농업과) ;
  • 심창기 (농촌진흥청 농업과학기술원 친환경농업과) ;
  • 류경열 (농촌진흥청 농업과학기술원 친환경농업과) ;
  • 최두회 (농촌진흥청 농업과학기술원 친환경농업과) ;
  • 지형진 (농촌진흥청 농업과학기술원 친환경농업과)
  • Published : 2006.12.01

Abstract

Bacillus spp. isolated from mushroom medium wastes were evaluated for their biocontrol potentials on control of Sclerotinia rot of lettuce. The Bacillus isolates were more effectively obtained from waste suspension when directly added into nutrient agar(NA) medium than plating on the agar medium. Totally 42 isolates obtained from the wastes B23 and B42 showed highest antifungal activity against eight fungal pathogens such as Sclerotinia sclerotiorum, Rhizoctonia solani, Pythium ultimum, Phytophthora capsici, Fusarium oxysporum, Colletotrichum gloeosporioides, Cladosporium cucumerinum, and Botrytis cinerea and B23 and B42 were finally selected for further studies. Optimal concentration of the isolates was $10ml(10^7cfu/ml)$ to suppress the Sclerotinia rot of lettuce. Supplements such as starch, glycerol, and egg-yolk successfully maintained the bacterial population for 30 days in vitro and increased bio-control potentials against the disease. The bacterial isolate B23 alone showed 72% control value, furthermore it presented 95% control value when supplemented with 0.2% of starch, glycerol, and egg-yolk. The promising Bacillus isolates B23 and B42 were identified as Brevibacillus brevis and Bacillus stearothermophillus, respectively, based on morphological and physiological characteristics according to API database.

버섯폐배지로부터 잡균의 증식을 최소화하기 위해 버섯폐배지현탁액을 nutrient agar(NA) 배지에 직접 혼합하여 분주한 결과 배양기에 출현한 균체수가 희석평판법에 의한 것보다 훨씬 적었으며 형태적으로 Bacillus 속 세균이 분리될 확률이 높았다. 대장균(E. coli) $DH5{\alpha}$에 대하여 항균력을 보이는 1차 분리 균주를 신령버섯폐배지에서 12균주, 양송이폐배지에서 10균주, 느타리폐배지는 20균주 등 총 42균주를 분리하였다. 1차 선발한 균주를 최소 배지상에서 8종의 중요 식물병원균과 대치 우수한 길항력을 나타내는 17개의 균주를 2차 선발하였는데 이 들 중에서 배지상에서 생장이 우수하고 중요 식물병원균에 대하여 넓은 길항력을 가지는 B23과 B42균주를 최종 선발하였다. 이들은 각각 Brevibaciilus brevis와 Bacillus stearothermophilus로 동정되었다. 이들 길항균의 효과를 높이고 안전화를 위해서 유기농업에서 활용가능한 전분과 글리세린 및 계란노른자를 보조제로 선발하였다. 길항균과 이들 보조제를 혼합할 경우 대부분의 처리에서 세균의 밀도가 30일간 효과적으로 유지되거나 증가되었다. B23 단독 처리의 경우에는 상추균핵병의 발병율이 약 28% 정도였으나 전분(starch)과 글리세롤(glycerol) 및 계란노른자(Egg yolk)를 각각 0.2% 혼합 처리시는 발병율이 5% 이하로 나타나 길항세균 단독으로 처리하였을 경우보다 상추균핵병원의 방제 상승효과를 확인하였다.

Keywords

References

  1. Adams, P. B. and Ayers, W. A. 1979. Ecology of Sclerotinia species. Phytopathol. 69: 896-899 https://doi.org/10.1094/Phyto-69-896
  2. Chang, S. W. and Kim, S. K. 2003. First report of Sclerotinia rot caused by Sclerotinia sclerotiorum on some Vegetable crops in Korea. Plant Pathol. J. 19: 79-84 https://doi.org/10.5423/PPJ.2003.19.2.079
  3. Edwards, S. G. and Seddon, B. 2001. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. J. of Applied Microbiology 91: 652-659 https://doi.org/10.1046/j.1365-2672.2001.01430.x
  4. 지형진. 2005. 고추 주요 병해의 친환경적 종합관리. 한국고추연구회지 11: 41-54
  5. 지형진, 심창기, 류경열, 신현동. 2006. Podosphaera fusca에 의 한 상추 흰가루병의 증상과 피해. 식물병연구. 12: 294-297 https://doi.org/10.5423/RPD.2006.12.3.294
  6. Kim, H. S., Eom, S. J., Cho, S. G. and Choi, Y. J. 1994. Molecular cloning and expression of the acetyl xylan esterases gene(estII) of Bacillus stearothermophilus in Escherichia coli. Kor. J. Appl. Microbiol. Biotechnol. 22: 599-606
  7. Kim, H. W., Lee, K. Y., Baek, J. W., Kim, H. J., Park, J. Y., Lee, J. W., Jung, S. J. and Moon, B. J. 2004. Isoaltion and identification of antagonistic bacterium active against Sclerotinia sclerotiorum causing Sclerotinia rot on Crisphead Lettuce. Res. Plant. Dis. 10: 331-336 https://doi.org/10.5423/RPD.2004.10.4.331
  8. Kim, M. H., Sohn, C. B. and Oh, T. K. 1998. Cloning and sequencing of a cyclodextrin glycosyltransferase gene from Brevibacillus brevis CD162 and its expression in Escherichia coli.. FEMS Microbiology Letters. 164: 411-418 https://doi.org/10.1111/j.1574-6968.1998.tb13117.x
  9. Kim, W. G. and Cho, W. D. 1998. Comparative characteristics of two Sclerotinia species associated with occurrence of Sclerotinia rot on vegetable crops. Proc. and Abstr. of Mycol. Symp. in Asian Region, Seoul, Korea. 1-8 pp
  10. Zhang, S. and Reddy, M. S. 2001. Lack of induced systemic resistance in Peanut to late leaf spot disease by plant growthpromoting rhizobacteria and chemical elicitors. Plant Dis. 85: 879-884 https://doi.org/10.1094/PDIS.2001.85.8.879
  11. Zhang, X., Zhang, B. X., Zhang, Z., Shen, W. F., Yang, C. H., Yu, J. Q. and Zhao, Y. H. 2005. Survival of the biocontrol agents Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116 on the spikes of barley in the field. J. of Zhejiang Univ. SCI. 6B: 770-777 https://doi.org/10.1631/jzus.2005.B0770

Cited by

  1. Control of Powdery Mildew by Foliar Application of a Suspension of Cheonggukjang vol.21, pp.2, 2015, https://doi.org/10.5423/RPD.2015.21.2.058
  2. Estimation of the Chitinolytic and Antifungal Activity of Streptomyces sp. CA-23 and AA-65 isolates Isolated from Waste Mushroom Media vol.19, pp.4, 2015, https://doi.org/10.7585/kjps.2015.19.4.402
  3. Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria vol.19, pp.1, 2013, https://doi.org/10.5423/RPD.2013.19.1.012
  4. Biological Control of Lettuce Sclerotinia Rot by Bacillus subtilis GG95 vol.42, pp.3, 2014, https://doi.org/10.4489/KJM.2014.42.3.225
  5. Selection of Bacillus amyloliquefaciens M27 for Biocontrol on Lettuce Sclerotinia Rot vol.43, pp.3, 2015, https://doi.org/10.4489/KJM.2015.43.3.180
  6. The Antifungal Activity of Coffee Ground Compost Extract against Plant Pathogens vol.24, pp.4, 2016, https://doi.org/10.17137/korrae.2016.24.4.85