• Title/Summary/Keyword: Collapse length

Search Result 145, Processing Time 0.031 seconds

Modified toe pulp fillet flap coverage: Better wound healing and satisfactory length preservation

  • Baek, Sang Oon;Suh, Hyo Wan;Lee, Jun Yong
    • Archives of Plastic Surgery
    • /
    • v.45 no.1
    • /
    • pp.62-68
    • /
    • 2018
  • Background Amputation is commonly performed for toe necrosis secondary to peripheral vascular diseases, such as diabetes mellitus. When amputating a necrotic toe, preservation of the bony structure is important for preventing the collapse of adjacent digits into the amputated space. However, in the popular terminal Syme's amputation technique, partial amputation of the distal phalanx could cause increased tension on the wound margin. Herein, we introduce a new way to resect sufficient bony structure while maintaining the normal length, based on a morphological analysis of the toes. Methods Unlike the pulp of the finger in the distal phalanx, the toe has abundant teardrop-shaped pulp tissue. The ratio of the vertical length to the longitudinal length in the distal phalanx was compared between the toes and fingers. Amputation was performed at the proximal interphalangeal joint level. Then, a mobilizable pulp flap was rotated $90^{\circ}$ cephalad to replace the distal soft tissue defect. This modified toe fillet flap was performed in 5 patients. Results The toe pulp was found to have a vertically oriented morphology compared to that of the fingers, enabling length preservation through cephalad rotation. All defects were successfully covered without marginal ischemia. Conclusions While conventional toe fillet flap coverage focuses on the principle of length preservation as the first priority, our modified method takes both wound healing and length into account. The fattiest part of the pulp is advanced to the toe tip, providing a cushioning effect and enough length to substitute for phalangeal bone loss. Our modified method led to satisfactory functional and aesthetic outcomes.

Size-class Estimation of the Number of Walleye Pollock Theragra chalcogramma Caught in the Southwestern East Sea during the 1970s-1990s (1970-1990년대 동해에서 어획된 명태(Theragra chalcogramma)의 체장에 따른 체급별 어획 마릿수 추정)

  • Kang, Sukyung;Park, Jung Ho;Kim, Suam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.445-453
    • /
    • 2013
  • Walleye pollock Theragra chalcogramma fisheries in Korean waters have changed dramatically during the last three decades: the highest catches occurred in 1981, followed by continuous decreases through the 1990s, ending with a complete collapse of the population in the 2000s. The major spawning ground of walleye pollock is located in North Korean waters, and some juveniles (called nogari in Korean, <300 mm) migrate to the south for feeding and growth. Since the 1960s, Korean fishermen have often caught juveniles, and the weight (metric tons) of juvenile catch was recorded from 1975-1997. However, because the walleye pollock were not aged, the population age structure was not delineated. We developed a model to estimate the number of walleye pollock of each size class based on catch statistics of adults and juveniles, the catch proportion of each size class, and length and weight information on specimens collected by Danish-seine and drift-gill-net fisheries. The model results demonstrated that the recruitment size of walleye pollock was consistently within the 200-250mm size class, and the highest number of this size class occurred in 1981, although values greatly fluctuated interannually. The number of juvenile pollock was 10.4 times higher than that of adult pollock during 1975-1997. The total yield of juvenile pollock was 0.95 million tons, which was equivalent to about 68.2% of total pollock production. The number of juvenile pollock caught during the same period, however, was 16 billion, comprising about 91.2% of the total number caught. Such high fishing pressure on juvenile pollock is considered one of the main factors causing the collapse of the pollock population.

Evaluation on Flexural Behavior of Hybrid Beams with Rigid Joint Connecting Steel and Precast Concrete Elements (강재 보-PC 보가 강접합 연결된 하이브리드 보의 휨 거동 평가)

  • Seo, Eun-A;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • A hybrid precast concrete beam system with a simple rigid connection was proposed to compensate the limitations and shortcomings of the conventional bolt connection associated with the H-beams embedded into concrete beams. Three beam specimens with fixed both ends were tested under one-point top cyclic loading to explore the effectiveness of the developed hybrid beam system in transferring externally applied flexure to a column. The main parameter considered was the length ($L_s$) of H-beam, which was selected to be $0.25L_I$, $0.5L_I$, and $1.0L_I$, where $L_I$ is the distance from the support to the point of inflection. All beam specimens showed a better displacement ductility ratio than the reinforced concrete beams with the same longitudinal reinforcement index, indicating that the cyclic load-deflection curve and ductility were insignificantly affected by $L_s$. The continuous strain distribution along the beam length and the prediction of the ultimate load based on the collapse mechanism ascertained the structural adequacy of the developed rigid connection.

Seismic Fragility Analysis of Concrete Bridges Considering the Lap Splices of T-type Column (T형 교각의 겹침이음을 고려한 콘크리트 교량의 지진취약도 분석)

  • An, Hyojoon;Cho, Baiksoon;Park, Ju-Hyun;Lee, Jong-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.287-295
    • /
    • 2023
  • The collapse of bridges due to earthquakes results in many casualties and property damages. Thus, accurate prediction and preparation are required for the behavior of bridges during earthquakes. In particular, columns play an important role in the seismic behavior of bridges. The risk of collapse due to an earthquake increases when there is a problem of the insufficient lap splice in the column. In this study, to analyze the characteristics of the lap splice in the column, a numerical model was defined for the insufficient lap-spliced columns and verified using experimental data. The developed column model was applied to a commonly used RC slab bridge. Nonlinear static analysis for the column was performed to evaluate the change in the performance of the column according to the lap-spliced length. In addition, this study assessed the effect of the lap-spliced length on the seismic fragility analysis.

Collapse of steel cantilever roof of tribune induced by snow loads

  • Altunisik, Ahmet C.;Ates, Sevket;Husem, Metin;Genc, Ali F.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • In this paper, it is aimed to present a detail investigation related to structural behavior of laterally unrestrained steel cantilever roof of tribune with slender cross section. The structure is located in Tutak town in $A{\breve{g}}r{{\i}}$ and collapsed on October 25, 2015 at eastern part of Turkey is considered as a case study. This mild sloped roof structure was built from a variable I beam, and supported on steel columns of 5.5 m height covering totally $240m^2$ closed area in plan. The roof of tribune collapsed completely without any indication during first snowfall after construction at midnight a winter day, fortunately before the opening hours. The meteorological records and observations of local persons are combined together to estimate the intensity of snow load in the region and it is compared with the code specified values. Also, the wide/thickness and height/thickness ratios for flange and web are evaluated according to the design codes. Three dimensional finite element model of the existing steel tribune roof is generated considering project drawings and site investigations using commercially available software ANSYS. The displacements, principal stresses and strains along to the cantilever length and column height are given as contour diagrams and graph format. In addition to site investigation, the numerical and analytical works conducted in this study indicate that the unequivocal reasons of the collapse are overloading action of snow load intensity, some mistakes made in the design of steel cantilever beams, insufficient strength and rigidity of the main structural elements, and construction workmanship errors.

RF Dispersion and Linearity Characteristics of AlGaN/InGaN/GaN HEMTs (AlGaN/InGaN/GaN HEMTs의 RF Dispersion과 선형성에 관한 연구)

  • Lee, Jong-Uk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.29-34
    • /
    • 2004
  • This paper reports the RF dispersion and linearity characteristics of unpassivated AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs) grown by molecular beam epitaxy (MBE). The devices with a 0.5 ${\mu}{\textrm}{m}$ gate-length exhibited relatively good DC characteristics with a maximum drain current of 730 mA/mm and a peak g$_{m}$ of 156 mS/mm. Highly linear characteristic was observed by relatively flat DC transconductance (g$_{m}$) and good inter-modulation distortion characteristics, which indicates tight channel carrier confinement of the InGaN channel. Little current collapse in pulse I-V and load-pull measurements was observed at elevated temperatures and a relatively high power density of 1.8 W/mm was obtained at 2 GHz. These results indicate that current collapse related with surface states will not be a power limiting factor for the AlGaN/InGaN HEMTs.

A Case Study on Collapsed Geosynthetic Reinforced Segmental Retaining Wall (블록식 보강토옹벽의 붕괴사례 연구)

  • Kim, Byoung-Il;Yoo, Wan-Kyu;Kim, Kyeong-Mo;Lee, Bong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2006-2012
    • /
    • 2013
  • This case study deal with the investigation of various causes and analyses concerning the cases of the collapse of reinforced segmental retaining walls installed for newly constructing a peripheral road within the campus of ${\bigcirc}{\bigcirc}$ University located in Gyeonggi-do. As results of stability analyses and reviewing of design documents concerning collapsed reinforced segmental retaining walls, such a collapse appeared because of problems related to construction including poor-compacted backfill, the omission of the investigation on the bearing capacity, the length and space in the installation of reinforced materials, and drainage systems. Also, problems during diverse types of designing were confirmed involving the stability analysis of the entire slope stability to be considered during designing and failure in application of the proposed methods of FHWA or NCMA which are generally used for two-tier reinforced segmental retaining walls. In addition, based on these details of the stability assessment, the study proposed reinforcement solutions and construction methods for stabilizing reinforced segmental retaining walls to be reconstructed in the future.

Mitigation of progressive collapse in steel structures using a new passive connection

  • Mirtaheri, Masoud;Emami, Fereshteh;Zoghi, Mohammad A.;Salkhordeh, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.381-394
    • /
    • 2019
  • If an alternative path would not be considered for redistribution of loads, local failure in structures will be followed by a progressive collapse. When a vertical load-bearing element of a steel structure fails, the beams connected to it will lose their support. Accordingly, an increase in span's length adds to the internal forces in beams. The mentioned increasing load in beams leads to amplifying the moments there, and likewise in their corresponding connections. Since it is not possible to reinforce all the elements of the structure against this phenomenon, it seems rational to use other technics like specified strengthened connections. In this study, a novel connection is suggested to handle the stated phenomenon which is introduced as a passive connection. This connection enables the structure to tolerate the added loads after failing of the vertical element. To that end, two experimental models were constructed and thereafter tested in half-scale, one-story, double-bay, and bolted connections in three-dimensional spaces. This experimental study has been conducted to compare the ductility and strength of a frame that has ordinary rigid connections with a frame containing a novel passive connection. At last, parametric studies have been implemented to optimize the dimensions of the passive connection. Results show that the load-bearing capacity of the frame increased up to 75 percent. Also, a significant decrease in the displacement of the node wherein the column is removed was observed compared to the ordinary moment resisting frame with the same loads.

Evaluation of Plastic Collapse Bending Load of Elbows with Thinning Area of Various Shapes (여러 형상의 감육부를 가진 엘보우의 소성붕괴 굽힘 하중의 평가)

  • Shin, Kyu-In;Lee, Sung-Ho;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Elbows with various shapes of local wall thinning were numerically analyzed by finite element method to get load-displacement curves and the maximum loads. Results were compared with the experimental data obtained by another study. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending loads. Two types of bending loads were considered such as elbow opening mode and elbow closing mode. Also, two different wall thinning geometries were modeled. Wall thinning area located extrados or intrados of elbow inner surface was considered. Longitudinal and circumferential lengths of the thinning area and the thinned thickness were varied for analysis. The results showed that the maximum load of the wall-thinned elbow decreased with increasing of the circumferential thinning length and the thinned thickness in both of extrados and intrados thinning locations in both loading types. The maximum load obtained by the analysis were in good agreement with the experimentally measured maximum load with the same wall thinning type and dimensions. This supports accuracy of the analysis results obtained in this study.

Displacements Behavior of Rock Slope by Shaking Table Test (진동대 실험을 통한 암반비탈면의 변위 거동 특성)

  • Yoon, Won-Sub;Kang, Jong-Chul;Park, Yeon-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.245-254
    • /
    • 2020
  • This study investigated the so far little-researched characteristics of the behaviors of rock slopes at the time of an earthquake. For the selection of the rock block, a proper model was formed by applying the similarity in consideration of the roughness and strength of the rock slope(10m) on the site, and shaking table tests were carried out according to seismic excitement acceleration, and seismic waves. In the case of the inclination angle of the joint plane of 20°, the long period wave at 0.3g or more at the time of the seismic excitement surpassed the length of 100mm, the permissible displacement (0.01H, H:slope height), which brought about the collapse of the rock; the short period wave surpassed the permissible displacement at 0.1g, which caused the collapse of the slope. The rock slope was close to a rigid block and a structure more vulnerable to the long period wave than to the short period wave. It collapsed in the short period wave even at the seismic amplitude smaller than the maximum design acceleration in Korea.