DOI QR코드

DOI QR Code

Seismic Fragility Analysis of Concrete Bridges Considering the Lap Splices of T-type Column

T형 교각의 겹침이음을 고려한 콘크리트 교량의 지진취약도 분석

  • 안효준 (인하대학교 토목공학과) ;
  • 조백순 (인제대학교 건설환경공학부, 건설기술연구소) ;
  • 박주현 (인하대학교 토목공학과) ;
  • 이종한 (인하대학교 사회인프라공학과)
  • Received : 2022.11.09
  • Accepted : 2023.02.16
  • Published : 2023.06.01

Abstract

The collapse of bridges due to earthquakes results in many casualties and property damages. Thus, accurate prediction and preparation are required for the behavior of bridges during earthquakes. In particular, columns play an important role in the seismic behavior of bridges. The risk of collapse due to an earthquake increases when there is a problem of the insufficient lap splice in the column. In this study, to analyze the characteristics of the lap splice in the column, a numerical model was defined for the insufficient lap-spliced columns and verified using experimental data. The developed column model was applied to a commonly used RC slab bridge. Nonlinear static analysis for the column was performed to evaluate the change in the performance of the column according to the lap-spliced length. In addition, this study assessed the effect of the lap-spliced length on the seismic fragility analysis.

교량은 지진에 의해 붕괴가 일어나면 많은 수의 인명피해와 재산피해가 발생할 수 있어 정확한 지진거동 예측과 대비가 필요하다. 특히, 교각은 교량의 지진거동에 있어서 지배적인 역할을 한다. 또한, 교각의 겹침이음 길이 부족과 같은 설계적인 문제가 있다면 지진에 대한 위험성이 더욱 증대하게 된다. 본 연구에서는 교각에서 겹침이음 특성을 분석하기 위해, 겹침이음 길이가 부족한 교각의 수치해석 모델을 정의하고 실험데이터를 통해 검증하였다. 제시된 교각 모델을 일반적으로 사용되는 RC 슬래브 교량에 적용하였다. 교각의 비선형 정적해석을 수행하여 겹침이음에 따른 성능점 변화를 평가하였다. 또한, 지진취약도 곡선을 산정하여 교각의 겹침이음 길이에 따른 지진취약도 비교분석을 수행하였다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단 기초연구사업(No. 2022R1I1A3068458) 및 인하대학교 지원에 의해 수행되었음.

References

  1. Aboutaha, R. S., Engelhardt, M. D., Jirsa, J. O. and Kreger, M. E. (1996). "Retrofit of concrete columns with inadequate lap splices by the use of rectangular steel jackets." Earthquake Spectra, Vol. 12, No. 4, pp. 693-714. https://doi.org/10.1193/1.1585906
  2. ACI 318 (2019). Building code requirements for structural concrete and commentary, American Concrete Institute.
  3. Alvi, H. M., Lee, C. S. and Jeon, J. S. (2021). "Model development and seismic performance evaluation of rectangular reinforced concrete columns with short lap splices in existing building frames." Engineering Structures, Vol. 245, p. 112922.
  4. Bazant, Z. and Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle materials, CRC Press, London, USA.
  5. Chai, Y., Seible, P. and Frieder, M. (1991). "Seismic retrofit of circular bridge columns for enhanced flexural performance." ACI Structural Journal, Vol. 88, No. 5, pp. 572-584.
  6. Cho, J. Y. and Pincheira, J. A. (2006). "Inelastic analysis of reinforced concrete columns with short lap splices subjected to reversed cyclic loads." ACI Structural Journal, Vol. 103, No. 2, pp. 280-290.
  7. Choi, E., Park, S. H., Chung, Y. S. and Kim, H. S. (2013). "Seismic fragility analysis of lap spliced reinforced concrete columns retrofitted by SMA wire jackets." Smart Materials and Structures, Vol. 22, No. 8, pp. 1-11. https://doi.org/10.1088/0964-1726/22/8/085028
  8. Cornell, C. A., Jalayer, F., Hamburger, R. O. and Foutch, D. A. (2002). "Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines." Journal of Structural Engineering, Vol. 128, No. 4, pp. 526-533. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526)
  9. CSA (2019). Design of concrete structure, Canadian Standard Association.
  10. Darwin, D. and Zuo, J. (2000). "Splice strength of conventional and high relative rib area bars in normal and high-strength concrete." ACI Structural Journal, Vol. 97, No. 4, pp. 630-641.
  11. Eurocode 2 (2021). Design of concrete structures: Part 1-1: General rules and rules for buildings, British Standards Institute.
  12. Ghosh, J. and Padgett, J. E. (2010). "Aging considerations in the development of timedependent seismic fragility curves." Journal of Structural Engineering ASCE, Vol. 136, No. 12, pp. 1497-1511. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000260
  13. Harries, K. A., Ricles, J., Pessiki, S. and Sause, R. (2006). "Seismic retrofit of lap splices in nonductile square columns using carbon fiber-reinforced jackets." ACI Structural Journal, Vol. 103, No. 6, pp. 874-884.
  14. KDS 14 20 52 (2021). Design specifications of developments and lap splices in concrete structures, Ministry of Land, Infrastructure and Transport, South Korea.
  15. Mander, J. B., Priestley, M. J. N. and Park, R. (1988). "Theoretical stress-strain model for confined concrete." Journal of Structural Engineering ASCE, Vol. 114, No. 8, pp. 1804-1825. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  16. Mangalathu S., Jeon J. S., Padgett, J. E. and DesRoches, R. (2016). "ANCOVA-based grouping of bridge classes for seismic fragility assessment." Engineering Structures, Vol. 123, pp. 379-394. https://doi.org/10.1016/j.engstruct.2016.05.054
  17. Mazzoni, S., McKenna, F., Scott, M. H. and Fenves, G. L. (2006). OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center, University of California, Berkeley.
  18. Melek, M. and Wallace, J. W. (2004). "Cyclic behavior of columns with short lap splices." ACI Structural Journal, Vol. 101, pp. 802-811.
  19. Ministry of Land, Infrastructure and Transport (2020). 2020 Road Bridge and Tunnel Status Report, South Korea (in Korean).
  20. Nielson, B. G. and DesRoches, R. (2007). "Analytical seismic fragility curves for typical bridges in the central and southeastern United States." Earthquake Spectra, Vol. 23, No. 3, pp. 615-633. https://doi.org/10.1193/1.2756815
  21. Priestley, M. J. N., Seible, F. and Calvi, G. M. (1996). Seismic design and retrofit of reinforced concrete bridges, John Wiley, New York, U.S.A.
  22. Tariverdilo, S., Farjadi, A. and Barkhordary, M. (2009). "Fragility curves for reinforced concrete frames with lap spliced columns." IJE Trans A: Basics, Vol. 22, No. 3, pp. 213-224.
  23. Yassin, M. H. M. (1994). Nonlinear analysis of prestressed concrete structures under monotonic and cycling loads, Ph.D. Thesis, University of California, Berkeley.
  24. Zhang, Y., DesRoches, R. and Tien, I. (2019). "Impact of corrosion on risk assessment of shear-critical and short lap-spliced bridges." Engineering Structures, Vol. 189, pp. 260-271. https://doi.org/10.1016/j.engstruct.2019.03.050