• Title/Summary/Keyword: Collapse Probability

Search Result 143, Processing Time 0.019 seconds

Strategic width-wise arrangement of viscous dampers in steel buildings under strong earthquakes

  • Huang, Xiameng
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.225-238
    • /
    • 2021
  • Supplemental passive dampers are widely employed to improve the structural performance of buildings under seismic excitations. Nevertheless, the added damping could be counter-productive if the axial forces induced by the damper reaction forces are not routed properly in the columns. A few researchers engaged to optimize the width-wise damper arrangement to improve the delivered path of the axial column forces. However, most of these studies are limited under the design-based seismic level and few of them has evaluated the collapse performance of buildings under strong earthquakes. In this paper, the strategic width-wise placement method of viscous dampers is explored regarding the building performance under collapse state. Two realistic steel buildings with different storeys are modelled and compared to explore higher mode effects. Each building is designed with four different damper arrangement scenarios based on a classic damper distribution method. Both a far-fault and a near-fault seismic environment are considered for the buildings. Incremental Dynamic Analysis (IDA) is performed to evaluate the probability of collapse and the plastic mechanism of the retrofitted steel buildings.

Soil-structure interaction effects on collapse probability of the RC buildings subjected to far and near-field ground motions

  • Iman Hakamian;Kianoosh Taghikhani;Navid Manouchehri;Mohammad Mahdi Memarpour
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.99-112
    • /
    • 2023
  • This paper investigates the influences of Soil-Structure Interaction (SSI) on the seismic behavior of two-dimensional reinforced concrete moment-resisting frames subjected to Far-Field Ground Motion (FFGM) and Near-Field Ground Motion (NFGM). For this purpose, the nonlinear modeling of 7, 10, and 15-story reinforced concrete moment resisting frames were developed in Open Systems for Earthquake Engineering Simulation (OpenSees) software. Effects of SSI were studied by simulating Beam on Nonlinear Winkler Foundation (BNWF) and the soil type as homogenous medium-dense. Generally, the building resistance to seismic loads can be explained in terms of Incremental Dynamic Analysis (IDA); therefore, IDA curves are presented in this study. For comparison, the fragility evaluation is subjected to NFGM and FFGM as proposed by Quantification of Building Seismic Performance Factors (FEMA P-695). The seismic performance of Reinforced Concrete (RC) buildings with fixed and flexible foundations was evaluated to assess the probability of collapse. The results of this paper demonstrate that SSI and NFGM have significantly influenced the probability of failure of the RC frames. In particular, the flexible-base RC buildings experience higher Spectral acceleration (Sa) compared to the fixed-base ones subjected to FFGM and NFGM.

Risk assessment of transmission line structures under severe thunderstorms

  • Li, C.Q.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.773-784
    • /
    • 1998
  • To assess the collapse risk of transmission line structures subject to natural hazards, it is important to identify what hazard may cause the structural collapse. In Australia and many other countries, a large proportion of failures of transmission line structures are caused by severe thunderstorms. Because the wind loads generated by thunderstorms are not only random but time-variant as well, a time-dependent structural reliability approach for the risk assessment of transmission line structures is essential. However, a lack of appropriate stochastic models for thunderstorm winds usually makes this kind of analysis impossible. The intention of the paper is to propose a stochastic model that could realistically and accurately simulate wind loading due to severe thunderstorms. With the proposed thunderstorm model, the collapse risk of transmission line structures under severe thunderstorms is assessed numerically based on the computed failure probability of the structure.

Homogenized limit analysis of masonry structures with random input properties: polynomial Response Surface approximation and Monte Carlo simulations

  • Milani, G.;Benasciutti, D.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.417-447
    • /
    • 2010
  • The uncertainty often observed in experimental strengths of masonry constituents makes critical the selection of the appropriate inputs in finite element analysis of complex masonry buildings, as well as requires modelling the building ultimate load as a random variable. On the other hand, the utilization of expensive Monte Carlo simulations to estimate collapse load probability distributions may become computationally impractical when a single analysis of a complex building requires hours of computer calculations. To reduce the computational cost of Monte Carlo simulations, direct computer calculations can be replaced with inexpensive Response Surface (RS) models. This work investigates the use of RS models in Monte Carlo analysis of complex masonry buildings with random input parameters. The accuracy of the estimated RS models, as well as the good estimations of the collapse load cumulative distributions obtained via polynomial RS models, show how the proposed approach could be a useful tool in problems of technical interest.

Seismic Fragility Assessment of Ordinary RC Shear Walls Designed with a Nonlinear Dynamic Analysis (비선형 동적해석에 의해 내진설계된 철근콘크리트 보통 전단벽의 지진취약도 분석)

  • Jeon, Seong-Ha;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.169-181
    • /
    • 2019
  • Seismic performance of ordinary reinforced concrete shear wall systems commonly used in high-rise residential buildings is evaluated. Three types of shear walls exceeding 60m in height are designed by performance-based seismic design. Then, incremental dynamic analysis is performed collapse probability is assessed in accordance with the procedure of FEMA P695. As a result, story drift, plastic rotation, and compressive strain are observed to be major failure modes, but shear failure occur little. Collapse probability and collapse margin ratio of performance groups do not meet requirement of FEMA P695. It is observed that critical wall elements fail due to excessive compressive strain. Therefore, the compressive strain of concrete at the boundary area of the shear wall needs to be evaluated with more conservative acceptance criteria.

Development of Downstream Flood Damage Prediction Model Based on Probability of Failure Analysis in Agricultural Reservoir (3차원 수리모형을 이용한 농업용 저수지의 파괴확률에 따른 하류부 피해예측 모델 개발)

  • Jeon, Jeong Bae;Yoon, Seong Soo;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.95-107
    • /
    • 2020
  • The failures of the agricultural reservoirs that most have more than 50 years, have increased due to the abnormal weather and localized heavy rains. There are many studies on the prediction of damage from reservoir collapse, however, these referenced studies focused on evaluating reservoir collapse as single unit and applyed to one and two dimensional hydrodynamic model to identify the fluid flow. This study is to estimate failure probability of spillway, sliding, bearing capacity and overflowing targeting small and medium scale agricultural reservoirs. In addition, we calculate failure probability by complex mode. Moreover, we predict downstream flood damage by reservoir failure applying three dimensional hydrodynamic model. When the reservoir destroyed, the results are as follows; (1) the flow of fluid proceeds to same stream direction and to a lower slope by potential and kinetic energy; (2) The predicted damage in downstream is evaluated that damage due to building destruction is the highest.

Probabilistic analysis of RC beams according to IS456:2000 in limit state of collapse

  • Kulkarni, Anadee M.;Dattaa, Debarati
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • This paper investigates the probability of failure of reinforced concrete beams for limit state of collapse for flexure and shear. The influence of randomness of the variables on the failure probability is also examined. The Indian standard code for plain and reinforced concrete IS456:2000 is used for the design of beams. Probabilistic models are developed for flexure and shear according to IS456:2000. The loads considered acting on the beam are live load and dead load only. Random variables associated with the limit state equation such as grade of concrete, grade of steel, live load and dead load are identified. Probability of failure is evaluated based on the limit state equation using First Order Reliability Method (FORM). Importance of the random variables on the limit state equations are observed and the variables are accordingly reduced. The effect of the reduced parameters is checked on the probability of failure. The results show the role of each parameter on the design of beam. Thus, the Indian standard guidelines for plain and reinforced concrete IS456:2000 is investigated with the probabilistic and risk-based analysis and design for a simple beam. The results obtained are also compared with the literature and accordingly some suggestions are made.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.

Evaluation of genetic algorithms for the optimum distribution of viscous dampers in steel frames under strong earthquakes

  • Huang, Xiameng
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.215-227
    • /
    • 2018
  • Supplemental passive control devices are widely considered as an important tool to mitigate the dynamic response of a building under seismic excitation. Nevertheless, a systematic method for strategically placing dampers in the buildings is not prescribed in building codes and guidelines. Many deterministic and stochastic methods have been proposed by previous researchers to investigate the optimum distribution of the viscous dampers in the steel frames. However, the seismic performances of the retrofitted buildings that are under large earthquake intensity levels or near collapse state have not been evaluated by any seismic research. Recent years, an increasing number of studies utilize genetic algorithms (GA) to explore the complex engineering optimization problems. GA interfaced with nonlinear response history (NRH) analysis is considered as one of the most powerful and popular stochastic methods to deal with the nonlinear optimization problem of damper distribution. In this paper, the effectiveness and the efficiency of GA on optimizing damper distribution are first evaluated by strong ground motions associated with the collapse failure. A practical optimization framework using GA and NRH analysis is proposed for optimizing the distribution of the fluid viscous dampers within the moment resisting frames (MRF) regarding the improvements of large drifts under intensive seismic context. Both a 10-storey and a 20-storey building are involved to explore higher mode effect. A far-fault and a near-fault earthquake environment are also considered for the frames under different seismic intensity levels. To evaluate the improvements obtained from the GA optimization regarding the collapse performance of the buildings, Incremental Dynamic Analysis (IDA) is conducted and comparisons are made between the GA damper distribution and stiffness proportional damping distribution on the collapse probability of the retrofitted frames.

Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis

  • Khorami, Majid;Khorami, Masoud;Motahar, Hedayatollah;Alvansazyazdi, Mohammadfarid;Shariati, Mahdi;Jalali, Abdolrahim;Tahir, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.259-268
    • /
    • 2017
  • In this paper, the incremental nonlinear dynamic analysis is used to evaluate the seismic performance of steel moment frame structures. To this purpose, three special moment frame structure with 5, 10 and 15 stories are designed according to the Iran's national building code for steel structures and the provisions for design of earthquake resistant buildings (2800 code). Incremental Nonlinear Analysis (IDA) is performed for 15 different ground motions, and responses of the structures are evaluated. For the immediate occupancy and the collapse prevention performance levels, the probability that seismic demand exceeds the seismic capacity of the structures is computed based on FEMA350. Also, fragility curves are plotted for three high-code damage levels using HASUS provisions. Based on the obtained results, it is evident that increase in the height of the frame structures reduces the reliability level. In addition, it is concluded that for the design earthquake the probability of exceeding average collapse prevention level is considerably larger than high and full collapse prevention levels.9.