• 제목/요약/키워드: Collagen scaffold

검색결과 74건 처리시간 0.026초

In vivo 상에서 탈미네랄화된 골분이 함유된 PLGA 지지체를 이용한 추간판 디스크 재생 (Regeneration of Intervertebral Disc Using Poly(lactic-co-glycolic acid) Scaffolds Included Demineralized Bone Particle In Vivo)

  • 장지은;김혜윤;송정은;이동원;권순용;정진화;강길선
    • 폴리머
    • /
    • 제37권6호
    • /
    • pp.669-676
    • /
    • 2013
  • 탈미네랄화된 골분(demineralized bone particle, DBP)은 연골 형성의 유도인자로 사용되기 때문에 조직공학에서 널리 사용되는 생체재료이다. 본 연구에서는 in vivo 환경에서 디스크 재생 효과를 연구하기 위해 DBP를 poly(lactic-co-glycolic acid) (PLGA)에 첨가하여 다공성 지지체를 제조하였다. 디스크의 섬유륜 조직을 반으로 절개한 후, 수핵 조직을 제거하여 디스크 결손을 유발시켰다. 빈 공간에 PLGA, DBP/PLGA 지지체를 이식하여 in vivo 환경에서 조직공학적 디스크 재생을 관찰하였다. 1, 2 및 3개월 후 디스크를 적출하여 글리코스아미노글라이칸(glycosaminoglycan, sGAG) 및 콜라겐 합성 정도를 측정하였으며 조직학적 평가로 H&E, Safranin-O, Alcian blue 염색과 면역조직학적 평가로 제 I형 콜라겐, 제 II형 콜라겐 염색을 수행하였다. 그 결과 DBP/PLGA 지지체에서 sGAG 및 콜라겐 함량이 높은 것을 확인하였으며 추간판 디스크 재생의 가능성을 확인하였다.

연조직 증강을 위한 세포치료 시 비계로서 키토산의 온도 감응성 및 섬유모세포의 증식에 미치는 영향에 관한 연구 (STUDY ON THERMOSENSITIVITY OF CHITOSAN SCAFFOLD AND ON ITS EFFECTS ON FIBROBLAST PROLIFERATION IN CELL THERAPY FOR SOFT TISSUE AUGMENTATION)

  • 김정호;최진영
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권3호
    • /
    • pp.146-152
    • /
    • 2009
  • Traditional surgical method or injection using filler is performed for soft tissue augmentation. Surgical methods have disadvantage of surgical morbidity. Commercially available injectable materials have the disadvantages such as resorption, short-term effect. repeated application and hypersensitivity. Significant shortcoming of cell therapy using autologous fibroblasts is delay of treatment effect. Chitosan/${\beta}$-glycerol phosphate (GP) solution has thermosensitive property and allows sol-gel transition at physiologic pH and temperature. These properties may resolve the delay of treatment effect. The purposes of this study are to evaluate the viscosity and pH changes of chitosan/${\beta}$-GP solutions and to evaluate the effect of chitosan/${\beta}$-GP solution on fibroblast proliferation and production of collagen. We measured the viscosity and pH as function of temperature, of the solution containing 1:0.7, 1:0.75, 1:0.8 chitosan (1, 10, 100, 700 kDa) /${\beta}$-GP. Fibroblasts from ears of 5 rats were cultured in chitosan/${\beta}$-GP solutions for 3 weeks. Cell proliferation and collagen contents were measured every week with WST (water-soluble tetrazolium salt) assay and Collagen assay respectively. The Results are 1) Chitosan(100 kDa<)/${\beta}$-GP solution (1:0.75) showed sol-gel transition at physiologic pH and body temperature and injectable properties. It will enable to resolve the delay in treatment effect 2) Cell proliferation and total collagen contents of the control group were increased with time. However, these decreased after the 1st week in experimental group 3) Collagen contents in the experimental group are higher than that of control group. Chitosan/${\beta}$-GP solution may provide favorable conditions for cell function

연골조직공학에서 Polyactic-Glycolic Acid와 Chitosan 골격의 비교 (The Comparative Study between PLGA and Chitosan Scaffolds for Cartilage Tissue Engineering)

  • 이용직;정호윤;신동필;김종엽;양정덕;이동걸;박재우;조병채;백봉수
    • Archives of Plastic Surgery
    • /
    • 제32권5호
    • /
    • pp.599-606
    • /
    • 2005
  • Clinical application of the cartilage formed by tissue engineering is of no practical use due to the failure of long-term structural integrity maintenance. One of the important factors for integrity maintenance is the biomaterial for a scaffold. The purpose of this study is to evaluate the difference between polylactic-co-glycolic acids (PLGA) and chitosan as scaffolds. Human auricular chondrocytes were isolated, cultured, and seeded on the scaffolds, which were implanted in the back of nude mice. Eight animals were sacrificed at 4, 8, 12, 16, and 24 weeks after implantation respectively. In gross examination and histological findings, the volume of chondrocyte-PLGA complexes was decreased rapidly. The volume of chondrocyte-chitosan complexes was well maintained with a slow decrease rate. The expression of type II collagen protein detected by immunohistochemistry and western blots became weaker with time in the chondrocyte-PLGA complexes. However, the expression in the chondrocyte-chitosan complexes was strong for the whole period. Collagen type II gene expressions using RT-PCR showed a similar pattern. In conclusion, these results suggest that chitosan is a superior scaffold in cartilage tissue engineering in terms of structural integrity maintenance. It is expected that chitosan scaffold may become one of the most useful scaffolds for cartilage tissue engineering.

각막 간질 대체물로 콘드로이틴 설페이트가 결합된 콜라젠 스폰지의 생체 적합성 평가 (The Evaluation of Biocompatigbility of Collagen/Chondroitin Sulfate Sponge as a Scaffold for Corneal Stromal Layer)

  • 장인근;안재일;서영권;김재찬;송계용;박정극
    • KSBB Journal
    • /
    • 제21권6호
    • /
    • pp.439-443
    • /
    • 2006
  • 조직공학에서 생체재료의 생체적합성과 조직재생능력은 생체재료가 생체에 적합한지를 판단하는 가장 중요한 요소이다. 콜라젠은 인체조직을 이루는 주된 단백질이고, GAGs은 조직의 미세환경을 결정짓는 주요한 요소로 알려져 있다. 본 연구에서는 1형 콜라젠 스폰지를 탈수 열처리 (A군)하고 EDC로 가교결합한 것 (B군)과 CS를 첨가하여 EDC로 가교결합한 군 (C군)의 스폰지 형태의 콜라젠 지지체을 제조하였다. 제작된 콜라젠 스폰지를 3 mm의 디스크 형태로 토끼 각막의 실질부위에 주머니형태로 이식하였다. 8주 동안 각막의 신생혈관 생성, 혼탁, 지지체의 투명도 정도를 확인하고, 2주, 4주, 8주 후에 적출하여 염증과 각막 섬유모세포의 이동을 확인하였다. 모든 군에서 염증, 신생혈관 생성, 혼탁은 일어나지 않았다. 그러나 CS가 첨가된 콜라젠 스폰지에 섬유모세포의 이동이 많았고, 이식물의 투명도가 증가하였다. 1형 콜라젠 스폰지는 각막 간질에의 생체적합성이 뛰어나 각막 간질로의 대체 가능성이 크고, CS가 첨가된 1형 콜라젠 스폰지는 조직공학적 생인공각막의 재구성에 큰 도움을 줄 것으로 기대된다.

3D 바이오프린팅과 무지지체 조직공학 기술 기반 추간판 복합 조직 제작 (Fabrication of Tissue Engineered Intervertebral Disc Using Enable 3D bio-printing and Scaffod-Free technologies)

  • 김병국;박진호;박상혁
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권1호
    • /
    • pp.22-29
    • /
    • 2018
  • Intervertebral disc(IVD) mainly consists of Annulus fibrosus(AF) and Nucleus pulposus(NP), playing a role of distributing a mechanical load on vertebral body. IVD tissue engineering has been developed the methods to achieve anatomic morphology and restoration of biological function. The goal of present study is to identify the possibilities for creating a substitute of IVD the morphology and biological functions are the same as undamaged complete IVD. To fabricate the AF and NP combine biphasic IVD tissue, AF tissue scaffolds have been printed by 3D bio-printing system with natural biomaterials and NP tissues have been prepared by scaffold-free culture system. We evaluated whether the combined structure of 3D printed AF scaffold and scaffold-free NP tissue construct could support the architecture and cell functions as IVD tissue. 3D printed AF scaffolds were printed with 60 degree angle stripe patterned lamella structure(the inner-diameter is 5mm, outer-diameter is 10 mm and height is 3 mm). In the cytotoxicity test, the 3D printed AF scaffold showed good cell compatibility. The results of histological and immunohistochemical staining also showed the newly synthesized collagens and glycosaminoglycans, which are specific makers of AF tissue. And scaffold-free NP tissue actively synthesized glycosaminoglycans and type 2 collagen, which are the major components of NP tissue. When we combined two engineered tissues to realize the IVD, combined biphasic tissues showed a good integration between the two tissues. In conclusion, this study describes the fabrication of Engineered biphasic IVD tissue by using enable techniques of tissue engineering. This fabricated biphasic tissue would be used as a model system for the study of the native IVD tissue. In the future, it may have the potential to replace the damaged IVD in the future.

오리발 유래 콜라겐 스펀지의 피부재생 효과: In vitro 연구 (Effect of Duck's Feet Derived Collagen Sponge on Skin Regeneration: In Vitro Study)

  • 차세롬;정현기;김수영;김은영;송정은;박찬흠;권순용;강길선
    • 폴리머
    • /
    • 제39권3호
    • /
    • pp.493-498
    • /
    • 2015
  • 피부재생을 위한 생체재료는 염증반응이 최소화되는 안정한 소재로 빠른 피부재생을 돕기 위해 우수한 생체활성과 생체친화성을 가져야 하며, 세포의 부착과 성장을 돕는 미세구조와 다공성이 있어야 한다. 본 연구에서는 새로운 콜라겐 원으로서의 축산부산물인 오리발을 사용하여 콜라겐을 추출하였고 이를 탈미네랄화된 골분demineralized bone powder, DBP), 돼지 소장점막하 조직(small intestinal submucosa, SIS)과 비교하기 위해 스펀지 형태로 제작하였다. 지지체의 물리, 화학적 특징은 SEM, FTIR을 통해 확인하였다. 세포를 파종하여 MTT를 통해 세포의 부착 및 증식률을 측정하였고, 전염증성 사이토카인의 발현도를 보기 위해 RT-PCR을 실시하였다. 또한 항산화 활성능력을 보기 위해 1,1-diphenyl-2-picrylhydrazyl(DPPH)를 측정하였다. 그 결과 오리발 콜라겐 지지체가 물리적 특성이 우수하고 생체적합성이며, 상처 치유제로서의 가능성을 보여주었다.

동심축류가 유도되는 미세유체 소자 기반 Collagen Type I 미세섬유의 제작 (Fabrication of Collagen Type I Microfiber based on Co-axial Flow-induced Microfluidic Chip)

  • 이수경;이광호
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권5호
    • /
    • pp.186-194
    • /
    • 2016
  • In this study, a co-axial flow induced microfluidic chip to fabricate pure collagen type I microfiber via the control of collagen type I and Na-alginate gelation process. The pure collagen type I microfiber was generated by selective degradation of Ca-alginate from 'Core-Shell' structured hydrogel microfiber. To make 'Core-Shell' structure, collagen type I solution was introduced into core channel and 1.5% Na-alginate solution was injected into side channel in microfluidic chip. To evaluatethe 'Core-Shell' structure, the red and green fluorescence substances were mixed into collagen type I and Na-alginate solution, respectively. The fluorescence substances were uniformly loaded into each fiber, and the different fluorescence images were dependent on their location. By immoblizing EpH4-Ras and C6 cells within collagen type I and Na-alginate solution, we sucessfully demonstrated the co-culture of EpH4-Ras and C6 cells with 'Core-Shell' like hydrogel microfiber for 5 days. Only to produce pure collagen type I hydrogel fiber, tri-sodium citrate solution was used to dissolve the shell-like Ca-alginate hydrogel fiber from 'Core-Shell' structured hydrogel microfiber, which is an excellent advantage when the fiber is employed in three-dimensional scaffold. This novel method could apply various application in tissue engineering and biomedical engineering.

조직공학적 바이오디스크의 섬유륜 재생을 위한 지지체 특성평가 (Evaluation of Various Scaffolds for Tissue Engineered Biodisc Using Annulus Fibrosus Cells)

  • 하현정;김순희;윤선중;박상욱;소정원;김문석;이종문;강길선;이해방
    • 폴리머
    • /
    • 제32권1호
    • /
    • pp.26-30
    • /
    • 2008
  • 추간판 디스크의 섬유륜(AF)조직 재생에 적합한 다양한 담체를 평가하기 위해 천연재료인 소장점막하조직(SIS)과 탈미네랄화된 골분(DBP)을 폴리(락타이드-글리콜라이드) 공중합체(PLGA)와 혼합하여 담체(PLGA/SIS, PLGA/DBP, PLGA/SIS/DBP)를 제조하였으며, PLGA담체, PGA 메쉬, SIS 스폰지와 비교하였다. 제조된 담체의 압축강도 및 AF 세포를 담체에 파종하여 콜라겐 양과 DNA량을 측정하였으며, 이를 누드마우스 피하에 이식 후 적출하여 육안관찰과 조직학적인 평가를 수행하였다. 압축강도 측정에서 PLGA와 유사하게 PLGA/SIS, PLGA/DBP 에서도 충분한 강도를 나타내었다. DNA 증가량에 따른 콜라겐 양은 PLGA/SIS 에서 가장 높게 나타났고, 면역화학 염색을 통해 PLGA/SIS, PLGA/SIS/DBP 에서 글라이코스아미노글라이칸과 콜라겐 발현량이 높음을 확인하였다.

누드마우스를 이용한 다양한 피부 대체물의 성능비교 (Evaluation of the Various Artificial Skin Substitutes Implanted onto Nude Mice)

  • 이원재;이동원;허재영;이영대;박병윤;나동균
    • Archives of Plastic Surgery
    • /
    • 제35권2호
    • /
    • pp.127-133
    • /
    • 2008
  • Purpose: The purpose of this study is to evaluate the remodeling process of the various skin substitutes in 4th and 6th weeks following the transplantation when transplanted onto nude mice. Methods: Three types of artificial skin substitutes, such as PLGA scaffold with keratinocyte sheets(group 1), acellular human dermis($Surederm^{(TM)}$) and keratinocyte sheet(group 2), bioengineered skin($Neoderm^{(TM)}$)(group 3), were applied to the wound on nude mice. All mice were killed in 2, 4 weeks and/or 6 weeks after grafting and tissue samples were harvested from the back of mice. The changes in wound size, degree of angiogenesis, formation of basement membrane and epidermis, density of collagen fibers and neural restoration were examined. Results: There was no significant changes in wound size among the three groups. However, the size of wound decreased in the non-substituted group due to contracture. Degree of angiogenesis and systhesis of collagen or neurofilaments were mostly increased in bioengineered skin($Neoderm^{(TM)}$)(group 3), followed by acellular human dermis($Surederm^{(TM)}$) and keratinocyte sheet(group 2), PLGA scaffold with keratinocyte sheets (group 1). However, group 3 and group 2 showed similar thickness of basement membrane and epidermis. Conclusion: We found that degree of angiogenesis, formation of basement membrane and skin appendages, density of collagen fibers and neurofilaments can be the categories to evaluate the success of artificial skin substitution in early stages.

Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

  • Lim, Erh-Hsuin;Sardinha, Jose Paulo;Myers, Simon;Stevens, Molly
    • Archives of Plastic Surgery
    • /
    • 제40권6호
    • /
    • pp.676-686
    • /
    • 2013
  • Background To overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-${\beta}$1 (LTGF) into an electrospun poly(L-lactide) scaffold. Methods The electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats. Results Chemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen. Conclusions We have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.