• 제목/요약/키워드: Collagen scaffold

검색결과 74건 처리시간 0.02초

Cross-Linked Collagen Scaffold from Fish Skin as an Ideal Biopolymer for Tissue Engineering

  • Biazar, Esmaeil;Kamalvand, Mahshad;Keshel, Saeed Heidari;Pourjabbar, Bahareh;Rezaei-Tavirani, Mustafa
    • 한국재료학회지
    • /
    • 제32권4호
    • /
    • pp.186-192
    • /
    • 2022
  • Collagen is one of the most widely used biological materials in medical design. Collagen extracted from marine organisms can be a good biomaterial for tissue engineering applications due to its suitable properties. In this study, collagen is extracted from fish skin of Ctenopharyngodon Idella; then, the freeze drying method is used to design a porous scaffold. The scaffolds are modified with the chemical crosslinker N-(3-Dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) to improve some of the overall properties. The extracted collagen samples are evaluated by various analyzes including cytotoxicity test, SDS-PAGE, FTIR, DSC, SEM, biodegradability and cell culture. The results of the SDS-PAGE study demonstrate well the protein patterns of the extracted collagen. The results show that cross-linking of collagen scaffold increases denaturation temperature and degradation time. The results of cytotoxicity show that the modified scaffolds have no toxicity. The cell adhesion study also shows that epithelial cells adhere well to the scaffold. Therefore, this method of chemical modification of collagen scaffold can improve the physical and biological properties. Overall, the modified collagen scaffold can be a promising candidate for tissue engineering applications.

Effects of proanthocyanidin, a crosslinking agent, on physical and biological properties of collagen hydrogel scaffold

  • Choi, Yoorina;Kim, Hee-Jin;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • 제41권4호
    • /
    • pp.296-303
    • /
    • 2016
  • Objectives: The purpose of the present study was to evaluate the effects of proanthocyanidin (PAC), a crosslinking agent, on the physical properties of a collagen hydrogel and the behavior of human periodontal ligament cells (hPDLCs) cultured in the scaffold. Materials and Methods: Viability of hPDLCs treated with PAC was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The physical properties of PAC treated collagen hydrogel scaffold were evaluated by the measurement of setting time, surface roughness, and differential scanning calorimetry (DSC). The behavior of the hPDLCs in the collagen scaffold was evaluated by cell morphology observation and cell numbers counting. Results: The setting time of the collagen scaffold was shortened in the presence of PAC (p < 0.05). The surface roughness of the PAC-treated collagen was higher compared to the untreated control group (p < 0.05). The thermogram of the crosslinked collagen exhibited a higher endothermic peak compared to the uncrosslinked one. Cells in the PAC-treated collagen were observed to attach in closer proximity to one another with more cytoplasmic extensions compared to cells in the untreated control group. The number of cells cultured in the PAC-treated collagen scaffolds was significantly increased compared to the untreated control (p < 0.05). Conclusions: Our results showed that PAC enhanced the physical properties of the collagen scaffold. Furthermore, the proliferation of hPDLCs cultured in the collagen scaffold crosslinked with PAC was facilitated. Conclusively, the application of PAC to the collagen scaffold may be beneficial for engineering-based periodontal ligament regeneration in delayed replantation.

3차원 다공성 콜라겐지지체의 제조 및 특성 분석 (Fabrication and Characterization of 3-D Porous Collagen Scaffold)

  • 김진태;임수민;김병수;이득용;최재하
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권6호
    • /
    • pp.192-196
    • /
    • 2014
  • Collagen scaffolds were synthesized by cross linking into a solution mixture of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochlorid(EDC) in ethanol, followed by pressing, cleaning and lyophilization process after the type I atelo-collagen solutions in D.I water(pH3). The experimental conditions are collagen concentration of 1.0 wt%, 3.0 wt%, 5.0 wt% and differential concentration of cross-linker. Then, parametric studies were performed by varying the parameters to investigate the morphology, the porosity, the swelling ratio and the thickness and genotoxicity of the scaffolds. The scaffolds thickness pattern was regular to concentration of the degree of cross-linker and collagen. It was observed that the swelling ratio, the degree of crosslink, and the pore size(thickness of scaffold) can be controlled by adjusting the collagen, crosslinker. Among the parameters investigated, the smallest thickness can be achieved by collagen, crosslinker concentrate condition. The collagen scaffold is induced no genotoxicity. The lowest swelling ratio, as an indication of the highest degree of crosslink, can be obtained by adding crosslink agent.

Preparation of PHBV/Collagen Nanofibrous Mats and their Tissue Compatibility Compatibilscaffolds for tissue engineering

  • Meng, Wan;Kim, Se-Yong;Yuan, Jiang;Kim, Jung-Chul;Kwon, Oh-Hyeong;Ito, Yoshihiro;Kang, Inn-Kyu
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.50-51
    • /
    • 2006
  • The nanofibrous scaffolds were obtained by co-electrospinning PHBV and collagen Type I in HIFP. The resulting fiber diameters were in the range between 300 and 600 nm. The nanofiber surfaces were characterized by ATR-FTIR, ESCA and AFM. The PHBV and collagen components of the PHBV-Col nanofibrous scaffold were biodegraded by PHB depolymerase and a collagenase Type I aqueous solution, respectively. It was found, from the cell-culture experiment, that the PHBV-Col nanofibrous scaffold accelerated the adhesion of the NIH 3T3 cell compared to the PHBV nanofibrous scaffold, thus showing a good tissue engineering scaffold.

  • PDF

Enhancing generation efficiency of liver organoids in a collagen scaffold using human chemically derived hepatic progenitors

  • Myounghoi Kim;Yohan Kim;Elsy Soraya Salas Silva;Michael Adisasmita;Kyeong Sik Kim;Yun Kyung Jung;Kyeong Geun Lee;Ji Hyun Shin;Dongho Choi
    • 한국간담췌외과학회지
    • /
    • 제27권4호
    • /
    • pp.342-349
    • /
    • 2023
  • Backgrounds/Aims: Liver organoids have emerged as a powerful tool for studying liver biology and disease and for developing new therapies and regenerative medicine approaches. For organoid culture, Matrigel, a type of extracellular matrix, is the most commonly used material. However, Matrigel cannot be used for clinical applications due to the presence of unknown proteins that can cause immune rejection, batch-to-batch variability, and angiogenesis. Methods: To obtain human primary hepatocytes (hPHs), we performed 2 steps collagenase liver perfusion protocol. We treated three small molecules cocktails (A83-01, CHIR99021, and HGF) for reprogramming the hPHs into human chemically derived hepatic progenitors (hCdHs) and used hCdHs to generate liver organoids. Results: In this study, we report the generation of liver organoids in a collagen scaffold using hCdHs. In comparison with adult liver (or primary hepatocyte)-derived organoids with collagen scaffold (hALO_C), hCdH-derived organoids in a collagen scaffold (hCdHO_C) showed a 10-fold increase in organoid generation efficiency with higher expression of liver- or liver progenitor-specific markers. Moreover, we demonstrated that hCdHO_C could differentiate into hepatic organoids (hCdHO_C_DM), indicating the potential of these organoids as a platform for drug screening. Conclusions: Overall, our study highlights the potential of hCdHO_C as a tool for liver research and presents a new approach for generating liver organoids using hCdHs with a collagen scaffold.

콜라겐과 피브리노겐을 합성한 이중구조 생체재료의 제작 (Fabrication of a Dual-structured Biomaterial Combining Collagen and Fibrinogen)

  • 정홍문
    • 한국방사선학회논문지
    • /
    • 제17권6호
    • /
    • pp.993-999
    • /
    • 2023
  • 피브리노겐 그리고 콜라겐의 생채재료는 조직재생공학에 널리 사용되고 있다. 이번 연구에서는 이 두 가지 재료를 사용하여 새로운 이중구조지지체를 만들고자 한다. 전략적으로 조직재생은 혈관 재생이 우선이기 때문에 혈관형성에 도움을 주는 피브리노겐 지지체를 이중지지체의 외부로 형성시키고 중앙에는 조직재생에 더욱 더 효과 있는 콜라겐을 위치시킴으로써 새로운 조직 재생의 상승효과를 기대하고 한다. 전례 연구에서는 이 두 가지 재료를 혼용해서 사용하고는 있지만 아직까지 중심구조(Core)시스템의 지지체 구조의 형성으로 지지체를 만들어 보고된 바는 없다. 따라서 이번 연구의 핵심인 이중지지체는 내부는 콜라겐 지지체 외부는 피브리노겐을 위치시킨 중심(Core) 구조 제조 방법을 제시하고자 한다. 실험결과는 이중구조지지체의 전략적인 생분해(Biodegradation)에 기인하여 지지체의 외부에 위치한 피브리노겐은 빠른 생분해와 약물방출이 발생했다. 반면 콜라겐 지지체는 상대적으로 피브리노겐지지체 보다는 약물의 방출 시간을 오래 유지할 수 있는 결과를 보았다. 결론적으로 이중 지지체를 만드는 방법을 적용한다면 결손 조직재생에 상승효과가 있을 것으로 사료된다.

인공피부 개발을 위한 생채 적합성 지지체에 관한 연구

  • 김창환;김천호;박현숙;강현주;한은숙;김윤영;최영주;이수현;최태부;손영숙
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.429-432
    • /
    • 2000
  • 생체 적합성, 생분해성, 항균성 등의 특징을 갖는 키토산 지지체는 type I -p collagen과 bFGF 또는 fibronectin을 함께 코팅함으로써 세포적합성을 향상시켜 섬유아세포의 증식과 ECM의 분비를 증가시킬 수 있으며, 인공피부를 위한 적합한 지지체로 사용될 수 있다고 사료된다.

  • PDF

연골막하 연골 결손부에 삽입한 제 1형 아교질 지지체의 연골 재생 효과 (Chondrogenic Effect of Transplanted Type I Collagen Scaffold within Subperichondrial Cartilage Defect)

  • 이혁구;손대구;한기환;김준형;이소영
    • Archives of Plastic Surgery
    • /
    • 제32권4호
    • /
    • pp.521-528
    • /
    • 2005
  • The purpose of this research is to find out the degree of cartilage regeneration by inserting the atelo-collagen scaffold obtained from dermis of a calf on cartilage defect site. Dissection underneath the perichondrium by the periosteal elevator on both side of ears of six New Zealand white rabbits were made to expose the cartilage, leaving pairs of circular holes 3, 6, 9 mm width with punches. One hole was left for a control, and on the other hole atelo-collagen scaffold of the same size was transplanted. In postoperative 1, 2, 4 weeks, the tissues were dyed. The length of long axis of neocartilage was measured through an optical microscope with a 0.1 mm graduation at original magnification, ${\times}40$. In the first and second week, both group showed no sign of cartilage regeneration. In the fourth week, regeneration on marginal portions was observed on all groups and the average values of length of long axis of neocartilage according to defect size were as follows: In the cases with 3mm defect, it was $0.85{\pm}0.30mm$ in the control group, and $1.85{\pm}0.38mm$ in the graft group; in the cases with 6 mm defect, $1.33{\pm}0.58mm$ in the control group, and $2.25{\pm}0.46mm$ in the graft group; and in the cases with 9 mm defect, $2.33{\pm}0.77mm$ in the control group, and $4.47{\pm}1.39mm$ in the graft group. This means that the collagen scaffold has an influence on the regeneration of neocartilage. But the relative ratio of the length of neocartilage to cartilage defect size was not significant in the statistics.

The Role of Collagen Membrane as a Scaffold of Etchant for Regional Acceleratory Phenomenon

  • Shin, Seung-Woo;Pyo, Sung-Woon;Bae, Sun-Sook;Lee, Pil-Woo;Heo, Hyun-A;Lee, Won
    • Journal of Korean Dental Science
    • /
    • 제4권2호
    • /
    • pp.39-45
    • /
    • 2011
  • Purpose: The goal of this research is to find the role of collagen membrane, which can reduce physical damage, as a scaffold for possible alternative to the corticotomy which causes Regional Acceleratory Phenomenon (RAP). Materials and Methods: The experiments were carried out on 12 New Zealand white rabbits, approximately 3.5 kg in bodyweight. We made an incision on the skin of the mandibular border and applied 37% phosphoric acid and collagen membrane to the mandibular bone surface of the first group (experimental group), and only phosphoric acid to the second group (control group). After 3 days, 1 week, and 2 weeks, 4 rabbits each were sacrificed and specimens were obtained. Each specimen was stained by H&E and Tartrate-resistant acid phosphatase (TRAP), and histological changes were observed by light microscope. Results: The demineralization of the experimental group was weak compared to the control group. It also showed a gradual increase of demineralization (after 3 days, 1 week, and 2 weeks) and the control group showed more extensive demineralization than the experimental group. Conclusion: This study demonstrates the amount of demineralization as a result of using phosphoric acid, and as time went by, demineralization increased. The absorbable collagen membrane was used as a scaffold to increase bone demineralization effect and prevent dispersion to adjacent tissues, but rather the amount of bone demineralization decreased. Therefore, the role of collagen membrane as a scaffold for RAP was weak.

임상가를 위한 특집 3 - rhBMP-2와 LFA-collagen scaffold를 이용한 BRONJ의 성공적인 치료 전략 (Successful strategy of treatment used to rhBMP-2 and LFA-collagen scaffold for BRONJ)

  • 권경환
    • 대한치과의사협회지
    • /
    • 제52권4호
    • /
    • pp.218-233
    • /
    • 2014
  • Bispbosphonates are a class of pharmaceutic agents, which induce apoptosis of osteoclast as well as impair osteoclastic activity to suppress bone resorption. Thus, bisphophonates are effectively used to treat osteoporosis, multiple myeloma and to prevent bone metastases of malignant cancer. However, recently dental disease have been reported associated with Bisphosphonates. Thus, there are a number of discussions about proper prevention and treatment of bisphosphonate-related osteonecrosis of jaw(BRONJ). Marshall R. Urist in 1965 made the seminal discovery that a specific protein, BMP(bone morphogenetic protein), found in the extracellular matrix of demineralized bone could induce bone formation newly when implanted in extraosseous tissues in a host. BMPs are multi-functional growth factors which are members of the transforming growth factor-beta super family and their ability is that plays a pivotal roll in inducing bone. About 18 BMP family members have been identified and characterized. Among of them, BMP-2 and BMP-7 have significant importance in bone development. In this study, patients of BRONJ were recieved who visited Department of oral and maxillofacial surgery, school of dentistry, Wonkwang university for past 3 years from 2011 to 2013. We focused on the results of the surgical intervention. We suggest that new strategy of treatment used to rhBMP-2 and LFA(Lidocaine-Fibrinogen-Aprotinin)-collagen scaffold for patients of BRONJ. The purpose of this paper is to give a brief overview of BMPs and to critically review the clinical data currently available on rhBMP-2 and LFA collage scaffold.