• 제목/요약/키워드: Collaborative AI

검색결과 56건 처리시간 0.026초

주얼리 비즈니스를 위한 협업형 AI의 분석 연구 (An Analysis Study on Collaborative AI for the Jewelry Business)

  • 강혜림
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.305-310
    • /
    • 2024
  • 생성형 AI의 등장으로 AI는 인류와 본격적인 공존을 시작하였다. 방대한 데이터 기반의 AI 학습역량은 인간의 학습과는 다른 차원의 생산성으로 산업체에서 활용되고 있다. 그럼에도 불구하고 AI는 테크노포비아와 같은 어두운 이면의 사회적 현상도 보인다. AI에 대한 이해를 바탕으로 협업이 가능한 AI 모델을 분석하고 주얼리 산업에서 활용이 가능한 분야를 확인한다. 협업형 AI 모델을 활용하면 '아이디어 전개의 가속화', '디자인 역량의 강화', '생산성 강화' , '멀티모달 기능의 내재화' 등을 기대할 수 있다. 결국 AI는 협업이 가능한 도구적 관점에서 활용해야 하며, 이를 위해서는 주체성 있는 인간 중심의 마인드 셋이 필요하다. 본 연구의 주얼리 비즈니스를 위한 AI 협업방안 제언을 통해 주얼리 산업의 경쟁력 강화에 도움이 되기를 바란다.

AI Bots를 위한 멀티에이전트 협업 기술 동향 (Research Trends of Multi-agent Collaboration Technology for Artificial Intelligence Bots)

  • 강동오;정준영;이천희;박민호;이전우;이용주
    • 전자통신동향분석
    • /
    • 제37권6호
    • /
    • pp.32-42
    • /
    • 2022
  • Recently, decentralized approaches to artificial intelligence (AI) development, such as federated learning are drawing attention as AI development's cost and time inefficiency increase due to explosive data growth and rapid environmental changes. Collaborative AI technology that dynamically organizes collaborative groups between different agents to share data, knowledge, and experience and uses distributed resources to derive enhanced knowledge and analysis models through collaborative learning to solve given problems is an alternative to centralized AI. This article investigates and analyzes recent technologies and applications applicable to the research of multi-agent collaboration of AI bots, which can provide collaborative AI functionality autonomously.

Feature 저장소 기술 동향 (A Survey on Feature Store)

  • 허성진;김지용
    • 전자통신동향분석
    • /
    • 제36권2호
    • /
    • pp.65-74
    • /
    • 2021
  • In this paper, we discussed the necessity and importance of introducing feature stores to establish a collaborative environment between data engineering work and data science work. We examined the technology trends of feature stores by analyzing the status of some major feature stores. Moreover, by introducing a feature store, we can reduce the cost of performing artificial intelligence (AI) projects and improve the performance and reliability of AI models and the convenience of model operation. The future task is to establish technical requirements for establishing a collaborative environment between data engineering work and data science work and develop a solution for providing a collaborative environment based on this.

협동로봇과 AI 기술을 활용한 바리스타 로봇 연구 (The Study of Barista Robots Utilizing Collaborative Robotics and AI Technology)

  • 권도형;하태명;이재성;정윤상;김영건;김현각;송승준;오대길;이건우;정재원;박승운;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권3호
    • /
    • pp.36-45
    • /
    • 2024
  • Collaborative robots, designed for direct interaction with humans have limited adaptability to environmental changes. This study addresses this limitation by implementing a barista robot system using AI technology. To overcome limitations of traditional collaborative robots, a model that applies a real-time object detection algorithm to a 6-degree-of-freedom robot arm to recognize and control the position of random cups is proposed. A coffee ordering application is developed, allowing users to place orders through the app, which the robot arm then automatically prepares. The system is connected to ROS via TCP/IP socket communication, performing various tasks through state transitions and gripper control. Experimental results confirmed that the barista robot could autonomously handle processes of ordering, preparing, and serving coffee.

수업활동 기반 협력적 인공지능 수학교사 개발에 대한 고찰 (Examining Development of Collaborative Artificial Intelligence in the Context of Classroom Instruction)

  • 김미령;정경영;노지화
    • East Asian mathematical journal
    • /
    • 제35권4호
    • /
    • pp.509-528
    • /
    • 2019
  • As various changes in education in general and learning environment in particular have promoted different needs and expectations for learning at both personal and social levels, the roles that schools and school teachers typically have with respect to their students are being challenged. Especially with the recent, rapid progress of the artificial intelligence(AI) field, AI could serve beyond the way in which it has been used. Based on a review of some of the related literature and the current development of AI, a view on utilizing AI to be a collaborative, complementary partner with an human mathematics teacher in the classroom in order to support both students and teachers will be discussed.

U-Net-based Recommender Systems for Political Election System using Collaborative Filtering Algorithms

  • Nidhi Asthana;Haewon Byeon
    • Journal of information and communication convergence engineering
    • /
    • 제22권1호
    • /
    • pp.7-13
    • /
    • 2024
  • User preferences and ratings may be anticipated by recommendation systems, which are widely used in social networking, online shopping, healthcare, and even energy efficiency. Constructing trustworthy recommender systems for various applications, requires the analysis and mining of vast quantities of user data, including demographics. This study focuses on holding elections with vague voter and candidate preferences. Collaborative user ratings are used by filtering algorithms to provide suggestions. To avoid information overload, consumers are directed towards items that they are more likely to prefer based on the profile data used by recommender systems. Better interactions between governments, residents, and businesses may result from studies on recommender systems that facilitate the use of e-government services. To broaden people's access to the democratic process, the concept of "e-democracy" applies new media technologies. This study provides a framework for an electronic voting advisory system that uses machine learning.

The transformative impact of large language models on medical writing and publishing: current applications, challenges and future directions

  • Sangzin Ahn
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권5호
    • /
    • pp.393-401
    • /
    • 2024
  • Large language models (LLMs) are rapidly transforming medical writing and publishing. This review article focuses on experimental evidence to provide a comprehensive overview of the current applications, challenges, and future implications of LLMs in various stages of academic research and publishing process. Global surveys reveal a high prevalence of LLM usage in scientific writing, with both potential benefits and challenges associated with its adoption. LLMs have been successfully applied in literature search, research design, writing assistance, quality assessment, citation generation, and data analysis. LLMs have also been used in peer review and publication processes, including manuscript screening, generating review comments, and identifying potential biases. To ensure the integrity and quality of scholarly work in the era of LLM-assisted research, responsible artificial intelligence (AI) use is crucial. Researchers should prioritize verifying the accuracy and reliability of AI-generated content, maintain transparency in the use of LLMs, and develop collaborative human-AI workflows. Reviewers should focus on higher-order reviewing skills and be aware of the potential use of LLMs in manuscripts. Editorial offices should develop clear policies and guidelines on AI use and foster open dialogue within the academic community. Future directions include addressing the limitations and biases of current LLMs, exploring innovative applications, and continuously updating policies and practices in response to technological advancements. Collaborative efforts among stakeholders are necessary to harness the transformative potential of LLMs while maintaining the integrity of medical writing and publishing.

유사 아이템 정보를 이용한 콜드 아이템 추천성능 개선 (Addressing the Item Cold-Start in Recommendation Using Similar Warm Items)

  • 한정규;천세진
    • 한국멀티미디어학회논문지
    • /
    • 제24권12호
    • /
    • pp.1673-1681
    • /
    • 2021
  • Item cold start is a well studied problem in the research field of recommender systems. Still, many existing collaborative filters cannot recommend items accurately when only a few user-item interaction data are available for newly introduced items (Cold items). We propose a interaction feature prediction method to mitigate item cold start problem. The proposed method predicts the interaction features that collaborative filters can calculate for the cold items. For prediction, in addition to content features of the cold-items used by state-of-the-art methods, our method exploits the interaction features of k-nearest content neighbors of the cold-items. An attention network is adopted to extract appropriate information from the interaction features of the neighbors by examining the contents feature similarity between the cold-item and its neighbors. Our evaluation on a real dataset CiteULike shows that the proposed method outperforms state-of-the-art methods 0.027 in Recall@20 metric and 0.023 in NDCG@20 metric.

기존 영화 추천시스템의 문헌 고찰을 통한 유용한 확장 방안 (A Prospective Extension Through an Analysis of the Existing Movie Recommendation Systems and Their Challenges)

  • ;;;이경현
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권1호
    • /
    • pp.25-40
    • /
    • 2023
  • 추천 시스템은 지능적인 자동 결정을 생성하기 위해 사용자가 자주 사용한다. 영화 추천 시스템의 연구에서, 기존 접근 방식은 협업 및 콘텐츠 기반 필터링 기술을 사용한다. 협업 필터링은 사용자 유사성을 고려하는 반면, 콘텐츠 기반 필터링은 단일 사용자의 활동에 중점을 두고 있다. 또한 협업 필터링과 콘텐츠 기반 필터링을 결합한 혼합 필터링 접근법은 서로의 한계를 보완하기 위해 사용되고 있다. 최근엔 더 나은 추천 서비스를 제공하기 위해 사용자 간의 유사성을 찾는데 몇 가지 AI 기반 유사성 기법을 사용하고 있다. 본 논문은 기존의 다양한 영화 추천 시스템과 문제점 분석을 통해 가능한 해결책을 도출하여 유용한 확장 방안을 제공하는 것을 목표로 한다.

A Framework for Computer Vision-aided Construction Safety Monitoring Using Collaborative 4D BIM

  • Tran, Si Van-Tien;Bao, Quy Lan;Nguyen, Truong Linh;Park, Chansik
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1202-1208
    • /
    • 2022
  • Techniques based on computer vision are becoming increasingly important in construction safety monitoring. Using AI algorithms can automatically identify conceivable hazards and give feedback to stakeholders. However, the construction site remains various potential hazard situations during the project. Due to the site complexity, many visual devices simultaneously participate in the monitoring process. Therefore, it challenges developing and operating corresponding AI detection algorithms. Safety information resulting from computer vision needs to organize before delivering it to safety managers. This study proposes a framework for computer vision-aided construction safety monitoring using collaborative 4D BIM information to address this issue, called CSM4D. The suggested framework consists of two-module: (1) collaborative BIM information extraction module (CBIE) extracts the spatial-temporal information and potential hazard scenario of a specific activity; through that, Computer Vision-aid Safety Monitoring Module (CVSM) can apply accurate algorithms at the right workplace during the project. The proposed framework is expected to aid safety monitoring using computer vision and 4D BIM.

  • PDF