• Title/Summary/Keyword: Cold-Air

Search Result 1,225, Processing Time 0.025 seconds

An Experimental Study on the Improvement of Durability for the Foundation Concrete under Cold Weather Condition (혹한지역 기초 콘크리트의 내구성 향상을 위한 실험 연구)

  • 우상균;송영철;김경민;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.645-650
    • /
    • 2003
  • The purpose of this study is to provide the optimum mix design of cold weather concrete to be placed at the foundation structures in substation. The basic performance tests including slump and slump flow, air content, compressive strength and freezing & thawing resistance were conducted for cold weather concrete by varying with W/C ratios such as 40%, 50% and 60% and air contents such as 3%, 4%, 5% and 6%. The effect on durability of concrete corresponding to the increasing amount of air content and W/C ratio was evaluated and the optimum mix design was recommended. From this study, the concrete mix design containing 6% of air content and 45% of W/C ratio is recommended for the foundation concrete of substation.

  • PDF

SI Engine Hydrocarbon Emissions Reduction with Secondary Air Injection and Coolant Control (2차 공기분사 및 냉각수제어에 의한 SI 엔진의 탄화수소 배기저감)

  • 박기수;조영진;박심수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.51-58
    • /
    • 2000
  • It is well known that the majority of the emissions measured from vehicle exhaust in the US Federal Test Procedure(FTP-75) are emitted during the first 60 seconds. This paper describes an experimental study on SI engine emissions reduction after cold start with interval secondary air injection and coolant control. Secondary air injection after cold start to reduce exhaust emissions causes an exothermic reaction at the exhaust port and gives sufficient air to the catalyst. For that reason engine-out emissions oxidized in the exhaust port and the rapid heating of a catalytic converter after cold start with CSAI and ISAI are estimated. The influence of the coolant temperature on SI engine emissions has been estimated. In the present studycoolant control of the cylinder head tempeature is used to investigate the effect of coolant temperature on SI engine emissions. The results show that engine-out hydrocarbon and carbon monoxide emissions are considerably reduced with interval secondary air injection and coolant control.

  • PDF

A Study on the Airflow near the Cold Heat Source Using CFD in Merchandising Store (CFD를 이용한 대형매장 냉열원 주변의 공기유동에 관한 연구)

  • Cho Sung Woo;Park Min Young;Im Young Bin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.629-634
    • /
    • 2005
  • This paper performed to predict vertical temperature distribution and air flow near cold heat source in the mass merchandising store. At the height of 150 cm, the vertical air temperature difference between the results of CFD and of measurement field showed $10\%$ near the refrigeration zone and $8.8\%$ near the freezing zone. Therefore, it regarded as appropriate for the using CFD to investigate airflow near the heat sources. The 3 kinds of CFD model were divided by the disposition of diffuser/exhaust and diffuser air temperature. At the refrigeration and freezing zone in the Model 2 and 3, the temperature difference between the front and the back of human model were showed $6.8^{\circ}C\;and\;3.9^{\circ}C$ with diffuser air temperature $17^{\circ}C$ and were showed $6.8^{\circ}C$ and $4^{\circ}C$ with diffuser air temperature $19^{\circ}C$.

Improvement of Gas Turbine Performance Using LNG Cold Energy (액화천연가스의 냉열을 이용한 가스터빈의 성능향상)

  • Kim, Tong Seop;Ro, Sung Tack;Lee, Woo Il;Choi, Mansoo;Kauh, Sang Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.653-660
    • /
    • 1999
  • This work describes analysis on the effect of inlet air cooling by the cold energy of liquefied natural gas(LNG) on the performance of gas turbines. Gas turbine off-design analysis program to simulate the influence of compressor inlet temperature variation is prepared and an inlet air cooler is modeled. It is shown that the degree of power augmentation is much affected by the humidity of inlet air. If the humidity is low enough, that is the water content of the air does not condense, the temperature drop amounts to $18^{\circ}C$, which corresponds to more than 12% power increase, in case of a $1350^{\circ}C$ class gas turbine with methane as the fuel. Even with 60% humidity, about 8% power increase is possible. It is found that even though the fuel contains as much as 20% ethane in addition to methane, the power improvement does not change considerably. It is observed that if the humidity is not too high, the current system is feasible oven with conceivable air pressure loss at the inlet air cooler.

Trend of Refrigeration and Air-Conditioning Related Product and Facility in Korea (국내의 냉동공조기기 및 맹장설비 동향분석)

  • Oh, Hoo-Kyu;Kim, Byung-Cheol;Park, Ki-Won
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.585-590
    • /
    • 2005
  • It can be said that refrigeration and air-conditioning technology in Korea dates back to the ancient Shilla dynasty, all the way up to the Sokkuram(700s) and Seokbinggo(1700s). But modem refrigeration and air-conditioning technology was first developed in and introduced to Korea in the 1960s with the modernization of Korea. Today it is at a level which meets that of advanced countries in both the industrial and domestic fields. 62 million units of refrigeration and air-conditioning machinery and equipment were produced in 2003, worth a total of 7.7 trillion won(about 7.7 thousand million US$). As of 2003, there were about 700 companies that owned cold storage / freezing / refrigeration facilities, with cold storage capacity of about 2 million ton and capacity per company of about 3 thousand ton. This facilities most are continuously expanding and automatizing their facilities.

  • PDF

Quality Characteristics of Osmotic Dehydrated Sweet Pumpkin by Different Drying Methods (건조방법에 따른 삼투처리 단호박의 품질 특성)

  • Hong, Joo-Heon;Lee, Won-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1573-1579
    • /
    • 2004
  • This study was conducted to develop intermediate material for new processed food from sweet pumpkin. Osmotic dehydration was carried out as pretreatment before drying. After the sweet pumpkins were pretreated under optimized osmotic dehydration conditions, they were dried by three drying methods (hot air drying, vacuum drying and cold air drying). The moisture contents of dried sweet pumpkin products by osmosis treatment (sucrose) and hot air drying, vacuum drying, and cold air drying were 14.48, 14.09 and 13.87%, respectively. Cold air drying preserved more vitamin C content and showed lower color difference than hot air drying and vacuum drying. As a result of microscopic analysis, cold air dried sweet pumpkin was observed regular tissue, while hot air and vacuum dried sweet pumpkins were observed a cell collapse following the loss of water.

The study of RF gain reduction due to air-bridge for CPW PHEMT's (CPW PHEMT의 에어브리지에 의한 이득 감소 현상에 대한 연구)

  • 임병옥;강태신;이복형;이문교;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.10-16
    • /
    • 2003
  • To analyze the effects of the air-bridge parasitic capacitances on the performance of coplanar waveguide pseudomorphic high electron mobility transistors (CPW PHEMTs), the gate-to-air-bridge ( $C_{ag}$ ) and the drain-to air-bridge ( $C_{ad}$ ) capacitances were taken into account plus the conventional pinched-off cold. FET circuit model. To examine the effects of the parasitic capacitances due to the air-bridges, a variety routing schemes for the air-bridge interconnection were adopted for fabricating the 0.1-${\mu}{\textrm}{m}$ $\Gamma$-gate length CPW HEMT's. According to air-bridge schemes, the $S_{21}$ gain is affected considerably. From the results of the fabricated CPW PHEMT, the $C_{ag}$ and $C_{ad}$ is one of the important factor of decreasing the gain of HEMTs.

Analysis of Nocturnal Cold Air Flow Characteristics for Setting of Tropical Night Response Zone in Daegu (대구시 열대야 대응 구역 설정을 위한 야간 찬공기 유동성 분석)

  • SEO, Bo-Yong;LEE, Sang-Beom;GWON, Soon-Beom;CHA, Jae-Gyu;JUNG, Eung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.220-235
    • /
    • 2020
  • Heat wave generation in cities is basically affected by global warming, but it is further exacerbated by the impact of artificial heat emission and heat accumulation in the city. In particular, the effects of urban heat waves directly affect the occurrence of tropical nights. Basically, however, the choice of countermeasures against tropical nights is very limited compared to the daytime heat wave response. The purpose of this study was to analyze the characteristics of cold air flow at night as a countermeasure against tropical nights in Daegu Metropolitan City and to suggest its spatial applicability. As a research method, the spatial characteristics (flow velocity, flow rate, flow direction and range) of cold air flow in Daegu were quantitatively analyzed using KLAM_21, a cold air flow analysis program. As a result of the analysis, it was found that cold air generation and flow in the surrounding mountains of Daegu Metropolitan City was very active, but the inflow was limited to the urban area, which has tropical nights. However, it has been shown that the flow of cold air flowing from the surrounding mountains is very active in some urban areas, so it has spatial conditions that are very effective in countering tropical nights. If these spatial conditions are used for the urban planning, it will be very useful to develop countermeasures for tropical nights.