• Title/Summary/Keyword: Cold Extrusion Die

Search Result 61, Processing Time 0.025 seconds

Application of FTM and RSM for the Design of Cold Backward Extrusion Dies (냉간 후방 압출 금형설계에 FTM과 RSM의 활용)

  • Yeo H.T.;Choi Y.;Song Y.S.;Hur K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.99-106
    • /
    • 2001
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die Insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

  • PDF

A Study on the Optimal die angle of the Torsional Forward Extrusion Process (비틀림 전방압출 공정의 최적다이각에 관한 연구)

  • Lee S. I.;Kim Y. H.;Ma Xiang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.23-32
    • /
    • 2002
  • The torsional forward extrusion is the process that is executed by punch travel and die rotation. The advantages of having the die rotation on this process are that forming load can be reduced and optimal die angle can be increased. This provides a possibility to extrude cold-worded material where a large extrusion force and die angle are required. Also, this process can improve the material properties owing to the high deformation and uniform strain distribution. The forming load and optimal die angle of this process are determined by the upper bound analysis using stream function and the optimization technique. To verify the theoretical result, we have carried out experiments and FE simulations using DEFORM3D.

  • PDF

Optimal Design of Dimension of Extrusion Die with Single Stress Ring (단순보강링을 갖는 압출 금형의 치수 최적설계)

  • 안성찬;임용택
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.363-370
    • /
    • 2002
  • In this study, an optimal design technique was investigated for determining appropriate dimensions of components of the die set used in the extrusion process. For this, an axi-symmetric elastic finite element program for the analysis of deformation of the shrink fitted die set was developed with the Lagrange multiplier method to implement the constraint condition of shrink fit of stress ring. By coupling the rigid-viscoplastic analysis of extrusion process by CAMPform and elastic analysis of the die set, the optimization study was made by employing optimization program DOT. Considering the various assembly conditions, optimal design was determined for a single stress ring case. It is construed that the proposed design method can be beneficial for improving the tool life of cold extrusion die set at practice.

Optimal Design of Dimension of Extrusion Die with Multi Stress Rings (다중보강링을 갖는 압출금형의 치수최적설계)

  • An, Sung-Chan;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2211-2218
    • /
    • 2002
  • In this study, an optimal design study has been made to determine dimensions of die and multi stress rings for extrusion process. For this purpose, a thermo-rigid-viscoplastic finite element program, CAMPform, was used fur forming analysis of extrusion process and a developed elastic finite element program fur elastic stress analysis of the die set including stress rings. And an optimization program, DOT, was employed for the optimization analysis. From this investigation, it was found out that the amount of shrink fitting incurred by the order of assembly of the die set should be taken into account for optimization when the multi stress rings are used in practice. In addition, it is construed that the proposed design method can be beneficial fur improving the tool life of cold extrusion die set.

Design of Backward Extrusion Die by using Flexible Tolerance Method and Response Surface Methodology (FTM과 RSM을 이용한 후방 압출 금형 설계)

  • Hur Kwan Do;Yeo Hong Tae;Choi Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.167-174
    • /
    • 2005
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe (중공축 소재를 이용한 전후방 복합압출의 성형 특성)

  • Kim S. H.;Lee H. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.

Prediction of Die Wear in Extrusion and Wire Drawing (축대칭 압출 및 인발공정 중의 금형마멸예측)

  • Kim, Tae-Hyeong;Kim, Byeong-Min;Choi, Jae-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3031-3037
    • /
    • 1996
  • In cold forming processes, due to high working pressure action on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures into devlop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the forming propcesses that involve cold forward extrusion and wire drawing were simulated by rigid plastic finite element method and its output were used for predicting die wear by Archard wear model. The simulation results were compared with the measured worn dies.

Failure Analysis of Cold Extrusion Die for the Helical Gear (헬리컬기어 냉간압출금형의 파손해석)

  • 권혁홍
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.79-88
    • /
    • 2001
  • This paper suggests to predict the failure of helical gear extrusion die. The basic assumption that constitutes the frame-work for any combined stress failure theory is that failure is predicted to occur when the maximum value of stress becomes equal to or exceeds the value of the same modulus that produces failure in a simple uniaxial stress test using the same material. The stresses which were calculated to each critical points are applied maximum normal stress theory and distor-tion energy theory. The theroretical analysis and experimental results for Samanta process and New process dies were com-pared.

  • PDF

The elastic strain analysis of forged product and die according to the forging mode (단조형식에 따른 단조품과 금형의 탄성 변형에 관한 연구)

  • Lee, D.K.;Lee, Y.S.;Kim, W.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.586-591
    • /
    • 2001
  • In the cold forging, elastic deformation of the die has been investigated to improve the accuracy of cold forged parts with F.E.M analysis using DEFORM, and with experiments using strain gauges. In the experiments, initial billet was selected to easily find the effect of elastic deformation according to the forging modes, extrusion and upsetting type, and only extrusion type. Elastic deformation of the die can be obtained by the signal from the strain gauges and this signal can be amplified by data acquisition system during the process. In the F.E.M analysis, two types of analysis are used to predict elastic strain of the die. To improve an accuracy of forged product and die dimension, this study compared with strain distribution between experiment and F.E.M analysis. As a result, the history of the deformation of the die and elastic recovery of forged product can be obtained by the elastic strain analysis of forged product and die according to the forging modes.

  • PDF

Study on Accuracy of Product by Radial Deformation of Die in Backward Extrusion (후방압출 공정에서 금형의 반경반향 변형량을 통한 제품정밀도에 관한 연구)

  • 이강희;박태식;박용복
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.498-503
    • /
    • 2003
  • The die for cold forging gets a very high axial load and radial pressure during processing and hence deforms considerably in the radial direction. This radial deformation of die becomes a important factor influencing the dimensional accuracy of a product. In order to obtain the product with highly accurate dimension, therefore, it is essential to acquire some information on elastic deformation of the die and the product. The study has been performed for the relation of the deformation between the die and the product in backward extrusion. The strain of the die has been given by the simple experiment using the strain gauges attached to the outer surface of the die. Also the history of the deformation of the die and the product has been given by the experiment and Lames' formula. The results has been compared with the previous another method. The study has given useful results for the deformation history of the die and the product through the experiment and Lame's formula in backward extrusion, which can be applied in the die design for the product with accurate dimension.