• Title/Summary/Keyword: Coil Design

Search Result 998, Processing Time 0.027 seconds

Simulation study of magnetorheological testing cell design by incorporating all basic operating modes

  • Mughni, Mohd J.;Mazlan, Saiful A.;Zamzuri, Hairi;Yazid, Izyan I.M.;Rahman, Mohd A.A.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.901-916
    • /
    • 2014
  • Magnetorheological (MR) fluid is one of the field-responsive fluids that is of interest to many researchers due to its high yield stress value, which depends on the magnetic field strength. Similar to electrorheological (ER) fluid, the combination of working modes is one of the techniques to increase the performance of the fluids with limited focus on MR fluids. In this paper, a novel MR testing cell incorporated with valve, shear and squeeze operational modes is designed and constructed in order to investigate the behaviour of MR fluid in combined mode. The magnetic field distribution in the design concept was analyzed using finite element method in order to verify the effective areas of each mode have the acceptable range of flux density. The annular gap of valve and shear were fixed at 1 mm, while the squeeze gap between the parallel circular surfaces was varied up to 20 mm. Three different coil configurations, which were made up from 23 SWG copper wires were set up in the MR cell. The simulation results indicated that the magnetic field distributed in the squeeze gap was the highest among the other gaps with all coils were subjected to a constant applied current of 1 A. Moreover, the magnetic flux densities in all gaps were in a good range of magnitude based on the simulations that validated the proposed design concept. Hence, the 3D model of the MR testing cell was designed using Solidworks for manufacturing processes.

Design of an Air-Core HTS quadruple triplet for a heavy ion accelerator

  • Zhang, Zhan;Wei, Shaoqing;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.35-39
    • /
    • 2016
  • In recent years, high-temperature superconductor (HTS) Quadruple Triplets are being developed for heavy ion accelerators, because the HTS magnets are suitable to withstand radiation and high heat loads in the hot cell of accelerators. Generally, an iron yoke, which costs a mass of material, was employed to enhance the magnetic field when a quadrupole magnet was designed. The type of the magnet is called iron-dominated magnet, because the total magnetic field was mainly induced by the iron. However, in the HTS superconductor iron-dominated magnets, the coil-induced field also can have a certain proportion. Therefore, the air-core HTS quadrupole magnets can be considered instead of the iron-core HTS quadrupole magnet to be employed to save the iron material. This study presents the design of an air-core HTS quadruple triplet which consists three by air-core HTS quadruple magnet and compare the design result with that of an iron-core HTS quadruple triplet. First, the characteristics of an air-core HTS quadrupole magnet were analyzed to select the magnet system for the magnetic field uniformity impairment. Then, the field uniformity was improved(< 0.1%) exactly using evolution strategy (ES) method for each iron-core HTS quadrupole magnet and the air-core HTS quadruple triplet was established. Finally, the designed air-core triplet was compared with the iron-core HTS quadruple triplet, and the results of beam trajectories were presented with both the HTS quadruple triplet systems to show that the air-core triplet can be employed instead of the iron-core HTS triplet. The design of the air-core quadruple triplet was suggested for a heavy ion accelerator.

Robust Design for Parts of Induction Bolt Heating System (유도가열시스템의 구성부품에 대한 강건설계)

  • Kim, Doo Hyun;Kim, Sung Chul;Lee, Jong Ho;Kang, Moon Soo;Jeong, Cheon Kee
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.10-17
    • /
    • 2021
  • This paper presents the robust design of each component used in the development of an induction bolt heating system for dismantling the high-temperature high-pressure casing heating bolts of turbines in power plants. The induction bolt heating system comprises seven assemblies, namely AC breaker, AC filter, inverter, transformer, work coil, cable, and CT/PT. For each of these assemblies, the various failure modes are identified by the failure mode and effects analysis (FMEA) method, and the causes and effects of these failure modes are presented. In addition, the risk priority numbers are deduced for the individual parts. To ensure robust design, the insulated-gate bipolar transistor (IGBT), switched-mode power supply (SMPS), C/T (adjusting current), capacitor, and coupling are selected. The IGBT is changed to a field-effect transistor (FET) to enhance the voltage applied to the induction heating system, and a dual-safety device is added to the SMPS. For C/T (adjusting current), the turns ratio is adjusted to ensure an appropriate amount of induced current. The capacitor is replaced by a product with heat resistance and durability; further, coupling with a water-resistant structure is improved such that the connecting parts are not easily destroyed. The ground connection is chosen for management priority.

Design and Operational Characteristics of 150MW Pulse Power System for High Current Pulse Forming Network (대전류 펄스 성형이 가능한 150MW급 펄스파워 시스템의 설계 및 동작특성)

  • Hwang, Sun-Mook;Kwon, Hae-Ok;Kim, Jong-Seo;Kim, Kwang-Sik
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.217-223
    • /
    • 2012
  • This paper presents design and operational characteristics of 150 MW pulse power system for high current pulse forming network to control trigger time. The system is composed of two capacitor bank modules. Each capacitor bank module consist of a trigger vacuum switch, 9k 33kJ capacitor, an energy dump circuit, a crowbar circuit and a pulse shaping inductor and is connected in parallel. It is controlled by trigger controller to select operational module and determine triggering time. Pspice simulation was conducted about determining parameters of components such as crowbar circuit, capacitor, pulse forming inductor, trigger vacuum switch and predicting results of experiment circuit. The result of the experiment was in good agreement with the result of the simulation. The various current shapes with 300~650 us pulse width is formed by sequential firing time control of capacitor bank module. The maximum current is about 40 kA during simultaneous triggering of two capacitor bank modules. The developed 150 MW pulse power system can be applied to high current pulse power system such as rock fragmentation power sources, Rail gun, Coil gun, nano-powers, high power microwave.

Heating and Cooling System for Utilization of Surplus Air Thermal Energy in Greenhouse and its Control Logic

  • Yang, Seung-Hwan;Lee, Chun-Gu;Lee, Won-Kyu;Ashtiani, Alireza Araghi;Kim, Joon-Yong;Lee, Sang-Deok;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.19-27
    • /
    • 2012
  • Purpose: Utilizing air thermal energy during over-heated time in the greenhouse is a necessary component to save greenhouse heating costs for nighttime. However, there is no practical way to implement the related principles. Methods: In this study, a heating and cooling system which utilizes the surplus air thermal energy in a greenhouse was developed. Available air thermal energy and heating load for this experimental glasshouse were estimated based on temperature conditions of the plant growth and weather data. Results: Estimated values were 400 MJ/day for maximum surplus air thermal energy and 340 MJ/day for maximum heating energy which were target values of the design as well. The system consists of a heat pump, fan-coil units and heat storage tanks which are divided into low and high temperature tanks. Moreover, a new control logic was developed for surplus air thermal energy utilization. Conclusions: This paper explains the details of conceptual design process of the system. Results of test operations showed that the developed system performed the recovery and supply of the thermal energy according to design purposes.

Heat Exchanger Design Analysis for Propellant Pressurizing System of Satellite Launch Vehicles (소형위성 발사체용 추진제 가압 열교환기 설계 해석)

  • Lee H. J.;Han S. Y.;Chung Y. G.;Cho N. K.;Kil G. S.;Kim Y. K.
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.49-56
    • /
    • 2004
  • A heated and expanded helium is used to pressurize liquid propellants in propellant tanks of propulsion system of liquid propellant launch vehicles. To produce a heated and expanded helium, an hot-gas heat exchanger is used by utilizing heat source from an exhausted gas, which was generated in a gas generator to operate turbine of turbo-pump and dumped out through an exhaust duct of engine. Both experimental and numerical approaches of hot-gas heat exchanger design were conducted in the present study. Experimentally, siliconites - electrical resistance types - were used to simulate the full heat condition instead of an exhausted gas. Cryogenic heat exchangers, which were immersed in a liquid nitrogen pool, were used to feed cryogenic gaseous helium in a hot-gas heat exchanger. Numerical simulation was made using commercially utilized solver - Fluent V.6.0 - to validate experimental results. Helically coiled stainless steel pipe and stainless steel exhausted duct were consisted of tetrahedron unstructured mesh. Helium was a working fluid Inside helical heat coil and regarded as an ideal gas. Realizable k-』 turbulent modeling was adopted to take turbulent mixing effects in consideration. Comparisons between experimental results and numerical solutions are Presented. It is observed that a resulted hot-gas heat exchanger design is reliable based on the comparison of both results.

The Design and Performance Evaluation of a Parallelogram Type Magnetic Spring Suspension for Commercial Vehicle Seat (상용차 시트용 평행사변형구조 마그네틱 현가기구의 설계 및 성능평가)

  • Kwac, Lee Ku;Kim, Hong Gun;Shin, Hee Jae;Jung, Young Bae;Song, Jung Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.353-360
    • /
    • 2015
  • Commercial drivers feel tired more than the general public, because their driving times are long and they experience more idle vibration. In this study, we developed a nonlinear model of a magnetic, linear spring seat suspension to determine the optimal design to improve ride comfort. The resonant frequency for the optimal design of the suspension was found to be 3.5 Hz, and the stiffness was analyzed through displacement-load experiments. Additionally, the vibration transmissibility was analyzed by the suspension stiffness, and the existing coil spring type vibration transmissibility was found to be 0.99. A parallelogram type magnetic spring was determined to result in a better performance than the existing spring with a vibration transmissibility of 0.823.

Auto Tuning of Position Controller for Proportional Flow Control Solenoid Valve (비례유량제어밸브 위치제어기 자동조정)

  • Jung, Gyu-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.797-803
    • /
    • 2012
  • Proportional solenoid valves are a modulating type that can control the displacement of valves continuously by means of electromagnetic forces proportional to the solenoid coil current. Because the solenoid-type modulating valves have the advantages of fast response and compact design over air-operated or motor-operated valves, they have been gaining acceptance in chemical and power plants to control the flow of fluids such as water, steam, and gas. This paper deals with the auto tuning of the position controller that can provide the proportional and integral gain automatically based on the dynamic system identification. The process characteristics of the solenoid valve are estimated with critical gain and critical period at a stability limit based on implemented relay feedback, and the controller parameters are determined by the classical Ziegler-Nichols design method. The auto-tuning algorithm was verified with experiments, and the effects of the operating point at which the relay control is activated as well as the relay amplitude were investigated.

The Optimization and Numerical Analysis of The Antenna Circuit for Antenna Design With 13.56MHz As Transmitting Wireless Power (무선전력 전송용 13.56MHz의 안테나 설계를 위한 안테나 회로의 최적화 및 수치적 해석)

  • Chung, Sung-In;Lee, Seung-Min;Lee, Hug-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.10
    • /
    • pp.57-62
    • /
    • 2009
  • This study proposes the optimization and numerical analysis of the antenna circuit for antenna design with 13.56 MHz as transmitting wireless power, for calculating the dose radiation exposure to the real time. The 13.56 MHz of the antenna frequency bands is used to the loop antenna which is a induced current for transmitting the power with wireless the reader to the tag. The study compared to the real measurement value as calculating the value of the inductance and capacitance through the numerical analysis for the antenna LC resonance using the theory of the electromagnetic induction method. We tried to search for the resonance point as the voltages of both sides of antenna coil by the scope measures of the peak point, as we tried to be variable the resonance capacitor for the optimization tuning of the antenna circuit and the matching of the antenna port. We convince our research contributes to help the design and application technology of the wireless power transmit system which is received power supply with wireless.

Optimal Design and Performance Evaluation of X-type Magnetic Spring Suspension for Commercial Vehicle Seat (상용차 시트용 X-형 구조 마그네틱 현가기구의 최적 설계 및 성능평가)

  • Kwac, Lee Ku;Kim, Hong Gun;Song, Jung Sang;Shin, Hee Jae;Seo, Min Kang;Kim, Byung Ju;An, Kay Hyeok;Lee, Hye Min;Han, Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.456-464
    • /
    • 2014
  • Commercial vehicle drivers typically feel more fatigued compared to general-public drivers. because they spend longer periods of time driving and experience more rough road conditions. This study showed that the application of a magnet, a linear spring, and a seat suspension with nonlinear characteristics was the optimal design to increase comfort while driving. The resonant frequency for the optimal design suspension was 2.8 Hz, and the stiffness was analyzed through displacement-load experiments. Vibration transmissibility was analyzed by suspension stiffness and the existing dynamic compression. The magnetic spring type was at 0.875. As a result, the X-type magnetic spring performed better than the existing spring at 0.729.