• Title/Summary/Keyword: Coherent transmission

Search Result 89, Processing Time 0.011 seconds

All-optical Signal Processing of Fiber Impairments in Dual-Polarization 112 Gbit/s m-ary QAM Coherent Transmission

  • Asif, Rameez;Islam, Muhammad Khawar;Zafrullah, Muhammad
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • We have numerically implemented a receiver side all-optical signal processing method, i.e. optical backward propagation (OBP), by dispersion compensating fiber (DCF) and non-linear compensator (NLC) devised by effective negative Kerr non-linear coefficient using two highly non-linear fibers (HNLFs). The method is implemented for the post-processing of fiber transmission impairments, i.e. chromatic dispersion (CD) and non-linearities (NL). The OBP module is evaluated for dual-polarization (DP) m-ary (m=4,16,32,64,256) quadrature amplitude modulation (QAM) in 112 Gbit/s coherent transmission over 1200 km standard single mode fiber (SMF). We have also investigated an intensity limited optical backward propagation module (IL-OBP) by using a self-phase modulation-based optical limiter with an appropriate pre-chirping to compensate for the intensity fluctuations in the transmission link. Our results show that in highly non-linear sensitive 256QAM transmission, we have observed a 66% increase in the transmission distance by implementing IL-OBP as compared to conventional OBP.

Analysis and Compensation of I/Q Amplitude Imbalance In Coherent PON Systems (코히어런트 PON시스템의 I/Q 진폭불균형 분석 및 보상)

  • Kim, Nayeong;Lee, Seungwoo;Park, Youngil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1940-1946
    • /
    • 2015
  • An optical coherent system is considered for the next-generation optical access networks in enhancing the data rate and transmission distance. In this system, however, I/Q amplitude imbalance may occur at several parts of the system, leading to serious performance degradation. Asymmetric structure of a coherent receiver at the location of subscriber is one of the sources of I/Q imbalance. Therefore, this imbalance parameters must be removed or compensated to secure the transmission performance. In this paper, the source of I/Q amplitude imbalance is analyzed, and then the way to compensate for the imbalance at the receiver side is suggested. Performance after the compensation is estimated using simulation.

Transmission Performance Comparison of Direction Detection-Based 100-Gb/s Modulation Formats for Metro Area Optical Networks

  • Chung, Hwan Seok;Chang, Sun Hyok;Lee, Jonghyun;Kim, Kwangjoon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.800-806
    • /
    • 2012
  • Transmission performances of direct detection-based 100-Gb/s modulation formats are investigated and compared for metro area optical networks. The effects of optical signal-to-noise ratio sensitivity, chromatic dispersion, cross-channel nonlinearity, and transmission distance on the performance of differential 8-ary phase-shift keying (D8PSK), differential phase-shift keying plus three-level amplitude-shift keying (DPSK+3ASK), and dual-carrier differential quaternary phase-shift keying (DC-DQPSK) are evaluated. The performance of coherent dual-polarization quadrature phase-shift keying (DP-QPSK) with block phase estimation and coherent DP-QPSK with digital differential detection are also presented for reference. According to our analysis, all three direct detection modulation formats could transmit a 100-Gb/s signal over several hundred kilometers of a single-mode fiber link. The results also show that DC-DQPSK outperforms D8PSK and DPSK+3ASK, and the performance of DC-DQPSK is comparable to that of coherent DP-QPSK with digital differential detection. The maximum transmission distance of DC-DQPSK is over 1,000 km, which is enough distance for metro applications.

Coherent optical transmission experiment using FSK modulation and heterodyne detection scheme (FSK/Heterodyne 변복조 방식에 의한 코히런트 광송수신 실험)

  • 박희갑
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.121-125
    • /
    • 1991
  • A basic coherent optical transmission was demonstrated using FSK modulation and heterodyne detection scheme. Optical frequency of DFB LD light source at the transmitter side was stabilized with Fabry Perot etalon and bias feedback circuit. A tunable external cavity LD was used as a local oscillator at the receiver. Heterodyned output signal at IF frequency of 2GHz was measured and discussed.

  • PDF

A Study on Target Direction and Rage Estimation using Radar Single Pulse (레이더 단일 펄스를 이용한 목표물 방향과 거리 추정에 대한 연구)

  • Lee, Kwan-Hyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.107-112
    • /
    • 2014
  • In this paper, we analysed a performance signal to noise ratio about pulse, integration coherent, and integration non coherent system in radar system. It compared existing with proposal method in order to estimation two target direction of arrival. Generally, radar system radiate pulse wave in order to decreasing distortion of return wave and transmission wave. We analysed the performance integration coherent and integration non coherent. Integration coherent is processing system before doing envelop detection, and integration non coherent is processing system after doing envelop detection. Through simulation, we analysed a performance signal to noise ratio to estimation two target range detection and estimated target direction of arrival. We showed that integration coherent system is the most good performance.

Impulse Based TOA Estimation Method Using Non-Periodic Transmission Pattern in LR-WPAN (LR-WPAN에서 비주기적 전송 패턴을 갖는 임펄스 기반의 TOA 추정 기법)

  • Park, Woon-Yong;Park, Cheol-Ung;Hong, Yun-Gi;Choi, Sung-Soo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.352-360
    • /
    • 2008
  • Recently Task Group (TG) 4 of the Institute of Electrical and Electronics Engineers (IEEE) 802.15a has been recommended a system with ranging capability in existence of multiple Simultaneous operating piconets (SOPs) as well as low-cost, low-power. According to the ranging service, coherent and non-coherent based ranging schemes using ternary code have been adopted as a standard. However it is hard to estimate an accurate time of arrival (TOA) in case of using direct sequence based TOA estimation method because pulse repetition interval (PRI) offered by TG is more limited than the maximum excess delay (MED) of channel. To mitigate inter pulse interference (IPI) problem, this paper proposes a non-coherent TOA estimation scheme using non-periodic transmission (NPT) pattern. The proposed receiver is based on a non-coherent energy detection considering with motivation of low rate wireless personal area network (LR-WPAN). TOA information is estimated via proper comparison with a prescribed threshold after the sliding correlation and search back window (SBW) process for reducing TOA error. To verify the performance of proposed ranging scheme, two distinct channel models approved by IEEE 802.15.4a TG are considered. According to the simulation results, we could conclude that the proposed scheme have performed better performance than the conventional method on the existence of multiple SOPs.

No Blind Spot: Network Coverage Enhancement Through Joint Cooperation and Frequency Reuse

  • Zhong, Yi;Qiao, Pengcheng;Zhang, Wenyi;Zheng, Fu-chun
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.773-783
    • /
    • 2016
  • Both coordinated multi-point transmission and frequency reuse are effective approaches to mitigate inter-cell interference and improve network coverage. The motivation of this work is to explore the manner to effectively utilize the spectrum resource by reasonably combining cooperation and frequency reuse. The $Mat{\acute{e}}rn$ cluster process, which is appropriate to model networks with hot spots, is used to model the spatial distribution of base stations. Two cooperative mechanisms, coherent and non-coherent joint transmission (JT), are analyzed and compared. We also evaluate the effect of multiple antennas and imperfect channel state information. The simulation reveals that the proposed approach to combine cooperation and frequency reuse is effective to improve the network coverage for users located at both the center and the boundary of the cooperative region.

Simulation of nonstationary wind in one-spatial dimension with time-varying coherence by wavenumber-frequency spectrum and application to transmission line

  • Yang, Xiongjun;Lei, Ying;Liu, Lijun;Huang, Jinshan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.425-434
    • /
    • 2020
  • Practical non-synoptic fluctuating wind often exhibits nonstationary features and should be modeled as nonstationary random processes. Generally, the coherence function of the fluctuating wind field has time-varying characteristics. Some studies have shown that there is a big difference between the fluctuating wind field of the coherent function model with and without time variability. Therefore, it is of significance to simulate nonstationary fluctuating wind field with time-varying coherent function. However, current studies on the numerical simulation of nonstationary fluctuating wind field with time-varying coherence are very limited, and the proposed approaches are usually based on the traditional spectral representation method with low simulation efficiency. Especially, for the simulation of multi-variable wind field of large span structures such as transmission tower-line, not only the simulation is inefficient but also the matrix decomposition may have singularity problem. In this paper, it is proposed to conduct the numerical simulation of nonstationary fluctuating wind field in one-spatial dimension with time-varying coherence based on the wavenumber-frequency spectrum. The simulated multivariable nonstationary wind field with time-varying coherence is transformed into one-dimensional nonstationary random waves in the simulated spatial domain, and the simulation by wavenumber frequency spectrum is derived. So, the proposed simulation method can avoid the complicated Cholesky decomposition. Then, the proper orthogonal decomposition is employed to decompose the time-space dependent evolutionary power spectral density and the Fourier transform of time-varying coherent function, simultaneously, so that the two-dimensional Fast Fourier transform can be applied to further improve the simulation efficiency. Finally, the proposed method is applied to simulate the longitudinal nonstationary fluctuating wind velocity field along the transmission line to illustrate its performances.

Simulation of Time Delay Communication algorithm In the Shallow Underwater Channel

  • Yoon, Byung-Woo;Eren Yildirim, Mustafa
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • The need of data transmission in oceans and other underwater mediums are increasing day by day, so as the research. The underwater medium is very different from that of air. Propagation of electromagnetic wave in water or underground is very difficult because of the conductivity of the propagation materials. In this case, we usually use acoustic signals as ultrasonic but, they are not easy to transfer long distance with coherent method because of time varying multipaths, Doppler effects and attenuations. So, we use non-coherent methods such as FSK or ASK to communicate between long distances. But, as the propagation speed of acoustic wave is very slow, BW of the channel is narrow. It is very hard to guaranty the enough speed for the transmission of digital image data. In previous studies, we proposed this data communication protocol theoretically. In this paper, an underwater channel is modeled and this protocol is tested in this channel condition. The results show that the protocol is 4-6 times faster than ASK. Some relations and results are shown depending on the data length, channel length, bit rate etc.

Cost Effective Silica-Based 100 G DP-QPSK Coherent Receiver

  • Lee, Seo-Young;Han, Young-Tak;Kim, Jong-Hoi;Joung, Hyun-Do;Choe, Joong-Seon;Youn, Chun-Ju;Ko, Young-Ho;Kwon, Yong-Hwan
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.981-987
    • /
    • 2016
  • We present a cost-effective dual polarization quadrature phase-shift coherent receiver module using a silica planar lightwave circuit (PLC) hybrid assembly. Two polarization beam splitters and two $90^{\circ}$ optical hybrids are monolithically integrated in one silica PLC chip with an index contrast of $2%-{\Delta}$. Two four-channel spot-size converter integrated waveguide-photodetector (PD) arrays are bonded on PD carriers for transverse-electric/transverse-magnetic polarization, and butt-coupled to a polished facet of the PLC using a simple chip-to-chip bonding method. Instead of a ceramic sub-mount, a low-cost printed circuit board is applied in the module. A stepped CuW block is used to dissipate the heat generated from trans-impedance amplifiers and to vertically align RF transmission lines. The fabricated coherent receiver shows a 3-dB bandwidth of 26 GHz and a common mode rejection ratio of 16 dB at 22 GHz for a local oscillator optical input. A bit error rate of $8.3{\times}10^{-11}$ is achieved at a 112-Gbps back-to-back transmission with off-line digital signal processing.