• Title/Summary/Keyword: Cohen-Macaulay ring, Gorenstein ring

Search Result 12, Processing Time 0.015 seconds

AMALGAMATED DUPLICATION OF SOME SPECIAL RINGS

  • Tavasoli, Elham;Salimi, Maryam;Tehranian, Abolfazl
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.989-996
    • /
    • 2012
  • Let R be a commutative Noetherian ring and let I be an ideal of R. In this paper we study the amalgamated duplication ring $R{\bowtie}I$ which is introduced by D'Anna and Fontana. It is shown that if R is generically Cohen-Macaulay (resp. generically Gorenstein) and I is generically maximal Cohen-Macaulay (resp. generically canonical module), then $R{\bowtie}I$ is generically Cohen-Macaulay (resp. generically Gorenstein). We also de ned generically quasi-Gorenstein ring and we investigate when $R{\bowtie}I$ is generically quasi-Gorenstein. In addition, it is shown that $R{\bowtie}I$ is approximately Cohen-Macaulay if and only if R is approximately Cohen-Macaulay, provided some special conditions. Finally it is shown that if R is approximately Gorenstein, then $R{\bowtie}I$ is approximately Gorenstein.

ON COLUMN INVARIANT AND INDEX OF COHEN-MACAULAY LOCAL RINGS

  • Koh, Jee;Lee, Ki-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.871-883
    • /
    • 2006
  • We show that the Auslander index is the same as the column invariant over Gorenstein local rings. We also show that Ding's conjecture ([13]) holds for an isolated non-Gorenstein ring A satisfying a certain condition which seems to be weaker than the condition that the associated graded ring of A is Cohen-Macaulay.

A NOTE ON TYPES OF NOETHERIAN LOCAL RINGS

  • Lee, Kisuk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.645-652
    • /
    • 2002
  • In this note we investigate some results which concern the types of local rings. In particular it is shown that if the type of a quasi-unmixed local ring A is less than or equal to depth A + 1, and $\hat{A}_p$ is Cohen-Macaulay for every prime $p\neq\hat{m}$, then A is Cohen-Macaulay. (This implies the previously known result: if A satisfies $(S_{n-1})}$, where n is the type of a .ins A, then A is Cohen-Macaulay.)

THE WEAK F-REGULARITY OF COHEN-MACAULAY LOCAL RINGS

  • Cho, Y.H.;Moon, M.I.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.175-180
    • /
    • 1991
  • In [3], [4] and [5], Hochster and Huneke introduced the notions of the tight closure of an ideal and of the weak F-regularity of a ring. This notion enabled us to give new proofs of many results in commutative algebra. A regular ring is known to be F-regular, and a Gorenstein local ring is proved to be F-regular provided that one ideal generated by a system of parameters (briefly s.o.p.) is tightly closed. In fact, a Gorenstein local ring is weakly F-regular if and only if there exists a system of parameters ideal which is tightly closed [3]. But we do not know whether this fact is true or not if a ring is not Gorenstein, in particular, a ring is a Cohen Macaulay (briefly C-M) local ring. In this paper, we will prove this in the case of an 1-dimensional C-M local ring. For this, we study the F-rationality and the normality of the ring. And we will also prove that a C-M local ring is to be Gorenstein under some additional condition about the tight closure.

  • PDF

SOME REMARKS ON TYPES OF NOETHERIAN LOCAL RINGS

  • Lee, Kisuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.625-633
    • /
    • 2014
  • We study some results which concern the types of Noetherian local rings, and improve slightly the previous result: For a complete unmixed (or quasi-unmixed) Noetherian local ring A, we prove that if either $A_p$ is Cohen-Macaulay, or $r(Ap){\leq}depth$ $A_p+1$ for every prime ideal p in A, then A is Cohen-Macaulay. Also, some analogous results for modules are considered.

ON TYPES OF NOETHERIAN LOCAL RINGS AND MODULES

  • Lee, Ki-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.987-995
    • /
    • 2007
  • We investigate some results which concern the types of Noetherian local rings. In particular, we show that if r(Ap) ${\le}$ depth Ap + 1 for each prime ideal p of a quasi-unmixed Noetherian local ring A, then A is Cohen-Macaulay. It is also shown that the Kawasaki conjecture holds when dim A ${\le}$ depth A + 1. At the end, we deal with some analogous results for modules, which are derived from the results studied on rings.

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.

NOTE ON GOOD IDEALS IN GORENSTEIN LOCAL RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.479-484
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m and d = dim A. Then we say that I is a good ideal in A, if I contains a reduction $Q=(a_1,a_2,...,a_d)$ generated by d elements in A and $G(I)=\bigoplus_{n\geq0}I^n/I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1-d, where a(G(I)) denotes the a-invariant of G(I). Let S = A[Q/a$_1$] and P = mS. In this paper, we show that the following conditions are equivalent. (1) $I^2$ = QI and I = Q:I. (2) $I^2S$ = $a_1$IS and IS = $a_1$S:sIS. (3) $I^2$Sp = $a_1$ISp and ISp = $a_1$Sp :sp ISp. We denote by $X_A(Q)$ the set of good ideals I in $X_A(Q)$ such that I contains Q as a reduction. As a Corollary of this result, we show that $I\inX_A(Q)\Leftrightarrow\IS_P\inX_{SP}(Qp)$.