DOI QR코드

DOI QR Code

A NOTE ON TYPES OF NOETHERIAN LOCAL RINGS

  • Lee, Kisuk (Department of Mathematics, Sookmyung Women′s University)
  • Published : 2002.11.01

Abstract

In this note we investigate some results which concern the types of local rings. In particular it is shown that if the type of a quasi-unmixed local ring A is less than or equal to depth A + 1, and $\hat{A}_p$ is Cohen-Macaulay for every prime $p\neq\hat{m}$, then A is Cohen-Macaulay. (This implies the previously known result: if A satisfies $(S_{n-1})}$, where n is the type of a .ins A, then A is Cohen-Macaulay.)

Keywords

References

  1. Proc. Japan Acard. 70, Ser. v.A Complete local ($S_{n-1}$) rings of type $n\;{\ge}\;3$ are Cohen-Macaulay Y. Aoyama https://doi.org/10.3792/pjaa.70.80
  2. Math. Z. v.82 On the ubiquity of Gorenstein rings H. Bass https://doi.org/10.1007/BF01112819
  3. Proc. Amer. Math. Soc. v.115 The Evans-Griffith syzygy theorem and Bass numbers W. Bruns https://doi.org/10.2307/2159338
  4. Bull. London Math. Soc. v.17 Complete local domains of type two are Cohen-Macaulay D. Costa;C. Huneke;M. Miller https://doi.org/10.1112/blms/17.1.29
  5. Math. Scand. v.41 On the μ' in a minimal injective resolution Ⅱ H. B. Foxby
  6. Equimultiplicity and blowing up M. Hermann;S. Ikeda;U. Orbanz
  7. Pacific J. Math. v.94 no.1 A characterization of locally Macaulay completions C. Huneke https://doi.org/10.2140/pjm.1981.94.131
  8. Proc. Amer. Math. Soc. v.122 Local rings of relatively small type are Cohen-Macaulay T. Kawasaki
  9. Bull. London Math. Soc. v.23 Unmixed local rings of type two are Cohen-Macaulay T. Marley https://doi.org/10.1112/blms/23.1.43
  10. Camb. Stduy Adv. Math. v.8 Commutative ring theory H. Matsumura
  11. J. London Math. Soc. v.32 no.2 A note on the first non-vanishing local cohomology module J. Koh https://doi.org/10.1112/jlms/s2-32.2.229
  12. J. Math. Kyoto Univ. v.24 Existence of dualizing complexes T. Ogma
  13. Sem. Math. Sup. Homological invariants of modules over commutative rings P. Roberts
  14. Bull. London Math. Soc. v.15 Rings of type 1 are Gorenstein https://doi.org/10.1112/blms/15.1.48
  15. Math. Studies v.14 Divisor theory in module categories W. V. Vasconcelos

Cited by

  1. SOME REMARKS ON TYPES OF NOETHERIAN LOCAL RINGS vol.27, pp.4, 2014, https://doi.org/10.14403/jcms.2014.27.4.625