References
-
Proc. Japan Acard. 70, Ser.
v.A
Complete local (
$S_{n-1}$ ) rings of type$n\;{\ge}\;3$ are Cohen-Macaulay Y. Aoyama https://doi.org/10.3792/pjaa.70.80 - Math. Z. v.82 On the ubiquity of Gorenstein rings H. Bass https://doi.org/10.1007/BF01112819
- Proc. Amer. Math. Soc. v.115 The Evans-Griffith syzygy theorem and Bass numbers W. Bruns https://doi.org/10.2307/2159338
- Bull. London Math. Soc. v.17 Complete local domains of type two are Cohen-Macaulay D. Costa;C. Huneke;M. Miller https://doi.org/10.1112/blms/17.1.29
- Math. Scand. v.41 On the μ' in a minimal injective resolution Ⅱ H. B. Foxby
- Equimultiplicity and blowing up M. Hermann;S. Ikeda;U. Orbanz
- Pacific J. Math. v.94 no.1 A characterization of locally Macaulay completions C. Huneke https://doi.org/10.2140/pjm.1981.94.131
- Proc. Amer. Math. Soc. v.122 Local rings of relatively small type are Cohen-Macaulay T. Kawasaki
- Bull. London Math. Soc. v.23 Unmixed local rings of type two are Cohen-Macaulay T. Marley https://doi.org/10.1112/blms/23.1.43
- Camb. Stduy Adv. Math. v.8 Commutative ring theory H. Matsumura
- J. London Math. Soc. v.32 no.2 A note on the first non-vanishing local cohomology module J. Koh https://doi.org/10.1112/jlms/s2-32.2.229
- J. Math. Kyoto Univ. v.24 Existence of dualizing complexes T. Ogma
- Sem. Math. Sup. Homological invariants of modules over commutative rings P. Roberts
- Bull. London Math. Soc. v.15 Rings of type 1 are Gorenstein https://doi.org/10.1112/blms/15.1.48
- Math. Studies v.14 Divisor theory in module categories W. V. Vasconcelos
Cited by
- SOME REMARKS ON TYPES OF NOETHERIAN LOCAL RINGS vol.27, pp.4, 2014, https://doi.org/10.14403/jcms.2014.27.4.625