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ON TYPES OF NOETHERIAN LOCAL RINGS AND
MODULES

Kisuk LEE

ABSTRACT. We investigate some results which concern the types of Noe-
therian local rings. In particular, we show that if r(A4p) < depth 4y +1
for each prime ideal p of a quasi-unmixed Noetherian local ring A, then A
is Cohen-Macaulay. It is also shown that the Kawasaki conjecture holds
when dim A < depth A + 1. At the end, we deal with some analogous
results for modules, which are derived from the results studied on rings.

1. Introduction

Throughout this paper, we assume that (A, m) is a commutative Noetherian
local ring of dimension d, and M is a finitely generated A-module. We also
assume that all modules are unitary.

For a prime ideal p of A, the i-th Bass number of M at p, denoted u;(p, M),
is defined to be dimk(p)Extfqp (k(p), My), where k(p) = Ap /pAp: we set p;(A) =
pi(m, A) for brevity. The type of A, denoted by r(A), is defined to be ug(A).
When a type of A is known, the conditions which make a ring A Cohen-
Macaulay have been studied by many mathematicians ([1,3,4,8,9], etc).

Bass characterized Gorenstein rings as Cohen-Macaulay rings A with r(A4) =
1 ([2]). Vasconcelos conjectured that the condition 7(A) = 1 is sufficient for
A to be Gorenstein, i.e., the condition “A is Cohen-Macaulay” can be omitted
((12]). In (5], Foxby proved this conjecture for essentially equicharacteristic
rings using a version of the Intersection Theorem. The conjecture was proven
in general by Roberts ([11]): he showed that local rings of type one are Cohen-
Macaulay, (and hence Gorenstein) using a minimal free resolution of a dualizing
complex.

By modifying Roberts’ argument, Costa, Huneke and Miller ([4]) showed
that when A is a local ring whose completion is a domain and 7(A) = 2, A
is Cohen-Macaulay. Expecting the above might be the best possible, they
gave two examples: a complete equidimensional local ring of type two that
is not Cohen-Macaulay, and a complete reduced local ring of type two that
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is not Cohen-Macaulay. Afterward, they posed a question: Does there exist
a complete, equidimensional, reduced local ring A with r(A) = 2 that is not
Cohen-Macaulay?

However, Marley answered this question in negative by proving the theorem
that if A is an unmixed local ring of type two, then A is Cohen-Macaulay ([8]).

Marley also asked that if a complete local ring of type n satisfies Serve’s
condition {S,_1), then it is Cohen-Macaulay. Kawasaki answered this question
in the affirmative when rings contain a field and n > 3, and later Aoyama gave
a general proof ([1]).

In [6], Kawasaki conjectured the following which is still open:

Conjecture. ([6]) Let A be a complete unmixed local ring of type n. If 4,
is Cohen-Macaulay for all p in Spec(A) such that ht(p) < n, then A is Cohen-
Macaulay.

In {7}, the author posed the following question:

Question. ([7]) Let (A,m) be a complete vnmixed Noetherian local ring. If
r(A) < depth 4 + 1, where r(A) is the type of A, then is a ring A Cohen-
Macaulay?, or equivalently, if A is not Cohen-Macaulay, then 7(A4) > depth A+
27

In [7], the above question was answered in the affirmative under some addi-
tional conditions: It was shown that the above question is true provided that Ay
is Cohen-Macaulay for every non-maximal prime ideal p in A. The question is
also true if we add the conditions, dim A < depth A +1, and £{HE(A)) < co.

In this article, we can't give a complete answer 1o the guestion, but we give
a positive answer under the assumption, r{A4,) < depth Ap + 1 for each prime
ideal p of A. We also prove that the Kawasaki’s conjecture holds for rings A
with dim A < depth A + 1.

In the last section, we show that all results studied on rings give the analo-
gous results for modules after some modifications.

2. Two main theorems

We recall that A is equidimensional if dim A/p = dim A for every minimal
prime p of A. A is said to be quasi-unmized (or formally equidimensional) if
its completion A is equidimensional, and to be unmized if dim A/p = dim A for
each associated prime p € Ass(A).

In this section, we concern the following question described in the introduc-
tion:

Question 2.1. Let (4,m) be a complete unmixed Noetherian local ring. If
r(A) < depth A + 1, where r(A) is the type of A, then is a ring A Cohen-
Macaulay?
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We note that if dim A < 2, then the above question is positive: if dim 4 = 1,
then r(4) < 2, and so A is Cohen-Macaulay. For a ring A of dimension 2, if
depth A <1 then r(A) < 2, which implies that A should be Cohen-Macaulay.

In [7], the following theorem was proved:

Theorem 2.2. ([7]) Let (A, m) be a quasi-unmized Noetherian local ring of
dimension d such that r(A) < depth A+1. Suppose that A, is Cohen-Macaulay
for every non-mazimal prime p in A. Then A is Cohen-Macaulay.

We may restate Proposition 2.4 in [7] in the form of our question as follows:

Proposition 2.3. ([7]) Let (A, m) be a Noetherian local ring of dimension d
such that r(A) < depth A+1. Suppose dim A < depth A+1, and £(HE 1(A)) <
oc. Then A is Cohen-Macaulay.

We now recall that if A is quasi-unmixed, then (i) A, is quasi-unmixed
for every prime p of A, and (ii) A/I is equidimensional if and only if 4/T is
quasi-unmixed for an ideal I of A ([9,Theorem 31.6]).

Now, we prove one of the main theorems in this article.

Theorem 2.4. Let (A,m) be a complete unmized Noetherian local ring, and
q a prime ideal of A. Suppose that r(Ap) < depth Ap + 1 for each prime ideal
p C q. Then Aq is Cohen-Macaulay. In particular, if r(Ap) < depth Ap +1 for
each prime ideal p of A, then a ring A is Cohen-Macaulay.

Proof. Since A is unmixed (and so quasi-unmixed), Aq is quasi-unmixed. Thus

—

it is enough to show that (Aq); is Cohen-Macaulay for every prime ideal p
(of ;1:,), which is properly contained in q/A\,f if then, Theorem 2.2 implies
that A, is Cohen-Macaulay since r(Aq) < depth A5 + 1. Since A is complete,
A is a homomorphic image of a Cohen-Macaulay ring, and so is Aq. Thus
by Lemma 2.8 in [7] (or see Lemma 3.1 in Section 3), showing that (;1;)5 is
Cohen-Macaulay for every prime ideal p (of :4;), which is properly contained

in q/A: is equivalent to showing that A,(= (Aq),) is Cohen-Macaulay for every
prime ideal p, which is properly contained in q. Thus it suffices to show the
latter part.

If ht(q) = 1, then A, is Cohen-Macaulay since Aq, is Cohen-Macaulay for
every minimal prime qq € q. Suppose ht(q) = ¢ > 1 and let q;(C q) be any
prime ideal of height 1. Then we can show that Ay, is Cohen-Macaulay by the
same reasoning as above. By induction, A4, is Cohen-Macaulay for any prime
ideal q5(C q) of height s < ¢. Hence, A4 is Cohen-Macaulay by Theorem 2.2.
In particular, A is Cohen-Macaulay if q is 2 maximal ideal m. This completes
the proof. O

We now turn to Kawasaki’s conjecture, and answer it affirmatively when the
inequality dim A < depth A + 1 holds.
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Theorem 2.5. Let A be a complete unmized Noetherian local ring of type n
with dim A < depth A + 1. Suppose that A, is Cohen-Macaulay for all p in
Spec(A) with ht(p) < n. Then A is Cohen-Macaulay.

Proof. We may assume that r(A) < dim A since if 7(4) > dim A, then A is
Cohen-Macaulay by assumption. Then 7(A) < dim A < depth A + 1. Thus by
Theorem 2.2, it is enough to show that A, is Cohen-Macaulay for every prime
ideal p # m of A. We first claim that

dim A, < depth A, + 1 for every prime ideals p of A.

Indeed, since u;(p, A) < pirt(m, A) for each ¢ and ¢t = ht(m/p) ([13]), if
depth Ap =4 and ht(m/p) = t, then

depth A = min{s : ps(m, A) # 0} < i+t = depth A, + ht(m/p).
Thus

dim A, — depth 4, < (dim A — ht(m/p)) — (depth A — ht(m/p))
dim A — depth A.

Since dim A — depth A < 1 by assumption, the clam is true.

Now let p be any non maximal prime ideal of A. If ht(p) < n, then A4, is
Cohen-Macaulay by assumption. Suppose ht(p) > n. Since A is unmixed and
catenary, we know 7(A4,) < r(A) ([13]) and thus

r(Ap) < r(A) < ht(p) < depth 4, + 1.

As in the proof of Theorem 2.4, since Ay, is Cohen-Macaulay for every minimal
prime po, we may assume that Aq(= (4p)4) is Cohen-Macaulay for every prime
q, which is properly contained in p using induction. Since A is complete, /Ai is
a homomorphic image of a Cohen-Macaulay ring, and so is Ay. Thus (Ap)q

—

is Cohen-Macaulay for every prime ¢, which is properly contained in pA, by
Lemma 2.8 in {7] Since A, is quasi-unmixed and r(A,) < depth A, + 1, by
Theorem 2.2 A, is Cohen-Macaulay. Again using Theorem 2.4, we can conclude
that A is Cohen-Macaulay. O

We close this section with a remark that Question 2.1 is obviously true
by Theorem 2.5 if the condition ‘r(4) < depth A + 1’ implies the condition
‘r(Ap) < depth A, + 1 for each prime ideal p of A’. So, it is natural to inquire
the following question:

For a complete unmized Noetherian local ring A, does the condition T(A) <
depth A+ 1’ always tmply the condition r(Ap) < depth Ay + 1 for each prime
ideal p of A’?
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3. Analogous results for modules

We have mostly focused on the case of rings so far, but in this section we
construct a similar theory for modules. Although the proofs used in the case
of rings give the proofs of the results for modules after some modifications, we
include detailed proofs for completeness since there is no complete proofs of
them (in particular, for Corollary 3.3) in the literature.

We start this section with recalling some definitions and fact used in the
sequel: An A- module M is said to be equidimensional if dim A/p = dim M
for every minimal prime p in Supp(M). M is said to be quasi-unmized if
its completion M is equidimensional, and to be unmized if dim A/p = dim M
for all p € Ass(M). Tt is known ([6]) that if A is a homomorphic image of a
Cohen-Macaulay ring, then M is a module with finite local cohomologies if and
only if M is equidimensional and M, is a Cohen-Macaulay Ap-module for all
p(# m) in Supp(M).

The following lemma enables us to localize M at a prime ideal when we need
to localize its completion Mata prime ideal.

Lemma 3.1. Let (A, m) be a Noetherian local ring, and M a finitely generated
A-module. Suppose that A is a homomorphic image of a Cohen-Macaulay ring,
and M is quasi-unmized. Then M, is Cohen-Macaulay for every prime p #m
in Supp(M) if and only if ]\;Ip is Cohen-Macaulay for every p # t in Supp(M).
Proof. If M is quasi-unmixed, then M is equidimensional ([9,Theorem 31.6]),
and so together with the assumptions, we know that M is a ring with finite
local cohomologies by the above note. Thus M is also a ring with finite local
cohomologies since Hi, (M) = HE (M) for each i. Hence M, is Cohen-Macaulay
for every p # t in Supp(M).

For the converse, since M is equidimensional and A is also a homomorphic
image of a Cohen-Macaulay ring, if Mp is Cohen-Macaulay for every p # m in
Supp(M), then M is also a ring with finite local cohomologies, and thus M is
a ring with finite local cohomologies. Hence M, is Cohen-Macaulay for every
prime p # m in Supp(M) again by the above note. O

Theorem 3.2. Let (A,m) be a Noetherian local ring, and M a finitely gener-
ated quasi-unmized A-module of dimension d such that r(M) < depth M + 1.
Suppose that M, is Cohen-Macaulay for every prime p # w in Supp(M). Then
M is Cohen-Macaulay.
Proof. We may assume that A is complete since r(M) = pg(m, M) = pg(th, M)
= r(M), and depth M = depth M. Suppose that M is not Cohen-Macaulay
and depth M =t < d. Let

(I%¢*):0-M I —... 5T — ...
be a minimal injective resolution of M, where

I'= 65peSupp(M)E‘(A/p)‘ui(;’,1\/1)'
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By applying Hom4(—, E(A/m)) to HO(I*) (= limHom4(A/m",I*)), we have

e A Sl apa(m) L ppeni(m) ) gee(m)
(Fe, fo) A A A A 0

We note that the i-th homology of F, is H:(M)V, where (—)V denotes the
Matlis dual. Since A is complete, A/ann(M) = S/J such that (S,ms) is a
Gorenstein local ring, J is an ideal of S and dim S = dim A/ann(M) = dim M.
By local duality, we have

Hi(M)Y = HL (M) = Exte (.M, S).

For a prime ideal p(# m) in Supp(M), since M, is Cohen-Macaulay by Lemma
3.1 and Sp, is Gorenstein, it follows that

Ext}(M,S) ® Sy, = Extgps (M,, Sp,) =0 if j # dim S, — dim M, .
We note that dim Sy, = dim M, since M is quasi-unmixed and dim $ = dim M.
Thus it is obtained that H,;(F, ® Ay) = 0 if ¢ # d since
H(F,®Ap,) = Hi(F)®A, 2 HL(M)' ® A4,
Ext§ (M, S) ® Sp, = Ext§*(M;,, Sp,)-

IR

Thus (Fy — Fg-1 — --- — F; — 0) ® A, is exact for each prime p(# m), and
so split. Now we consider two cases, (i) depthA =¢t <d—1and (ii)) t =d~ 1.
Case 1: Suppose depth M =t < d — 1, and let

gd—
Ge:0—- Gy B2 Gyt — - — G125 Gy,

where G; = Hom (Fy—;, A), and ¢; = Homu(f4—i, A). For j=1,...,d ¢, let
r; = Z‘Z;jt rank(G;) and I; the ideal generated by the r;-minors of g;. Then
it can be shown rank(Fy) — 7 > 1, and r; > ¢. Thus we have

(M) = pa(m) = rank(Fy) >r1 +1>t+1=depth M +1 > r(M),

which is a contradiction.

Case 2: Suppose depthM = t = d — 1. In this case, we show r(M) >
depth M + 2, which contradicts the assumption. Suppose to the contrary that
r(M) < depth M +2. We first note £(HZ~1(M)) < oo since Supp(Hg-1(F,)) =
{m}, and Hy_1(F,) is finitely generated. If I is an ideal generated by the
maximal minors of f4_1, then I is m-primary since (Fy — Fy_1 — 0) ®4 Ay
is exact for all primes p # m. By Theorem 13.10 in [10] and the assumption,
we know that

dim A = ht I; < rank(Fy) —rank(Fy_1)+1<r(M) < depthM +1=d.

This implies that dimA = dimM, d = r(M) = rank(Fy), and rank(Fy_1)
= 1. Thus Hy4_1(Fs) = M/(z1,...,24)M, where z1,...,24 € m. Since
(Hy-1(F.)) < oo, 71,...,Z4 is a system of parameters of M. Note that
(x1,...,24) C Ann(HZY(M)) since HI-Y(M) = (Hg-1(F.))Y = (M/(z1,
...,Zg)M)V. Using Lemma 2.(c) in [11], we can show HZ }(M) = Hi(K.(z))
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since £(H3"1(M)) < co. Since depthM = d — 1, we have H;(K,(z)) = 0 for
all ¢ > 1. Hence

e(z; M) = £(M/zM) — (Hy (K4 (z))) = €(M/zM) — ((M/zM)") =0,

which is a contradiction to the fact e(z; M) # 0 if dimA = dim M, and so
r(M) > depth M + 2. This concludes that depthM =t =d = dim M, i.e., M
is Cohen-Macaulay. (]

The following corollary is stated in [1] (in fact, he assumes that M is (S,,))
without proof. Here we give its proof.

Corollary 3.3. ([1]) Let M be a finitely generated A-module, and n > 3 be
an integer. If r(M) < n and M is (Sp—1) and equidimensional, then M is
Cohen-Macaulay.

Proof. We may assume that A is complete. Suppose that M is not Cohen-
Macaulay. If M, is Cohen-Macaulay for each prime p(# m) in Supp(M), then
by Theorem 3.2, depth M < r(M) — 1, which implies depth M < n — 1. This
contradicts that M is (S,—_1), and hence M is Cohen-Macaulay.

Suppose that M, is not Cohen-Macaulay for some prime p(# m) in Supp(M),
but M, is Cohen-Macaulay for every prime q & p. Since M is quasi-unmixed,
M, is also quasi-unmixed by Theorem 31.6 in [10]. We note that since A is
complete, A is a homomorphic image of a Cohen-Macaulay local ring, and so is
A, (since R — A — 0 implies R, — A, — 0). Thus (M,)q is Cohen-Macaulay
for every prime q’ which is not maximal in Supp(]\//[\p) by Lemma 3.1. Since M
is (Sp—1), unmixed, and A/ann(M) is catenary, we have

r(Mp) <r(M) <n <depthM, +1.

Thus M, is Cohen-Macaulay by Theorem 3.2, which is a contradiction. This
completes the proof. O

We note that a finitely generated A-module M is quasi-unmixed if and only
if A/ann(M) is quasi-unmixed. Also, it is easy to obtain that if M is quasi-
unmixed, then M, is also quasi-unmixed for any p € Supp(M) using Theorem
31.6 [9]. Hence we have the following result for modules, which is analogous to
Theorem 2.4. With the above facts, the proof can be completed by the same
way as the proof of Theorem 2.4.

Theorem 3.4. Let (A, m) be a complete Noetherian local ring, and M « finitely

generated unmized A-module. Suppose r(Mp) < depth M, + 1 for each prime
ideal p in Supp(M). If Mp is Cohen-Macaulay for every prime p # m in

~

Supp(M), then M is Cohen-Macaulay.

The following theorem shows that the conjecture 4.6 in [6] holds when
dimM < depth M + 1, which is analogous to Theorem 2.5. The proof is
almost same as the proof of Theorem 2.5. But for a complete proof, we still
need to check two facts: (1) dim M, < depth M, +1 for all p in Supp(M) when
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dimM < depth M + 1, and (2) r(M) < r(M,) for all p in Supp(M). We can
show the first part using the fact that u;(p, M) < piy¢(m, M) for each ¢ and
t = ht(m/p). It is easy to obtain the second part since dim My + dim A/p =
dim M for all p in Supp(M), provided that M is unmixed, and A is complete.
Before we state the theorem, we remark that the condition ‘dim M, < n’
(without equality) is sufficient: ‘dim M, < n’ is used in the conjecture.

Theorem 3.5. Let A be a complete Noetherian local ring, and M be a finitely
generated unmized A-module of type n with dim M < depth M + 1. If that M,
ts Cohen-Macaulay for oll p in Supp(M) such that dim M, < n, then M is
Cohen-Macaulay.

We close this section by restating some of problems together, which are still
open, in the form of conjectures.

Conjecture 1. ([6]) Let A be a complete unmixed Noetherian local ring of
type n. If A, is Cohen-Macaulay for all p in Spec(A) such that ht(p) < n, then
A is Cohen-Macaulay.

Conjecture 2. ([6]) Let A be a complete Noetherian local ring, and M be a
finitely generated unmixed A-module of type n. If that M, is Cohen-Macaulay
for all p in Supp(M) such that dim M, < n, then M is Cohen-Macaulay.

Conjecture 3. ([7]) Let (4,m) be a complete unmixed Noetherian local ring.
If r(A) < depth A+ 1, where r(A) is the type of A, then A is Cohen-Macaulay.

Conjecture 4. Let (A, m) be a complete Noetherian local ring, and M a
finitely generated unmixed A-module. If (M) < depth M + 1, where r(M) is
the type of M, then M is Cohen-Macaulay.
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