• Title/Summary/Keyword: Coefficient of Determination

Search Result 1,976, Processing Time 0.027 seconds

Study on the Concentration Estimation Equation of Nitrogen Dioxide using Hyperspectral Sensor (초분광센서를 활용한 이산화질소 농도 추정식에 관한 연구)

  • Jeon, Eui-Ik;Park, Jin-Woo;Lim, Seong-Ha;Kim, Dong-Woo;Yu, Jae-Jin;Son, Seung-Woo;Jeon, Hyung-Jin;Yoon, Jeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.19-25
    • /
    • 2019
  • The CleanSYS(Clean SYStem) is operated to monitor air pollutants emitted from specific industrial complexes in Korea. So the industrial complexes without the system are directly monitored by the control officers. For efficient monitoring, studies using various sensors have been conducted to monitor air pollutants emitted from industrial complex. In this study, hyperspectral sensors were used to model and verify the equations for estimating the concentration of $NO_2$(nitrogen dioxide) in air pollutants emitted. For development of the equations, spectral radiance were observed for $NO_2$ at various concentrations with different SZA(Solar Zenith Angle), VZA(Viewing Zenith Angle), and RAA(Relative Azimuth Angle). From the observed spectral radiance, the calculated value of the difference between the values of the specific wavelengths was taken as an absorption depth, and the equations were developed using the relationship between the depth and the $NO_2$ concentration. The spectral radiance mixed gas of $NO_2$ and $SO_2$(sulfur dioxide) was used to verify the equations. As a result, the $R^2$(coefficient of determination) and RMSE(Root Mean Square Error) were different from 0.71~0.88 and 72~23 ppm according to the form of the equation, and $R^2$ of the exponential form was the highest among the equations. Depending on the type of the equations, the accuracy of the estimated concentration with varying concentrations is not constant. However, if the equations are advanced in the future, hyperspectral sensors can be used to monitor the $NO_2$ emitted from the industrial complex.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.

Thin Layer Drying and Quality Characteristics of Ainsliaea acerifolia Sch. Bip. Using Far Infrared Radiation (원적외선을 이용한 단풍취의 박층 건조 및 품질 특성)

  • Ning, Xiao Feng;Li, He;Kang, Tae Hwan;Lee, Jun Soo;Lee, Jeong Hyun;Ha, Chung Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.884-892
    • /
    • 2014
  • The purpose of this study was to investigate the drying characteristics and drying models of Ainsliaea acerifolia Sch. Bip. using far-infrared thin layer drying. Far-infrared thin layer drying test on Ainsliaea acerifolia Sch. Bip. was conducted at two air velocities of 0.6 and 0.8 m/sec, as well as three drying temperatures of 40, 45, and $50^{\circ}C$ respectively. The drying models were estimated using coefficient of determination and root mean square error. Drying characteristics were analyzed based on factors such as drying rate, leaf color changes, antioxidant activity, and contents of polyphenolics and flavonoids. The results revealed that increases in drying temperature and air velocity caused a reduction in drying time. The Thompson model was considered suitable for thin layer drying using far-infrared radiation for Ainsliaea accerifolia Sch. Bip. Greenness and yellowness values decreased and lightness values increased after far-infrared thin layer drying, and the color difference (${\Delta}E$) values at $40^{\circ}C$ were higher than those at $45^{\circ}C$ and $50^{\circ}C$. The antioxidant properties of Ainsliaea acerifolia Sch. Bip. decreased under all far-infrared thin layer drying conditions, and the highest polyphenolic content (37.9 mg/g), flavonoid content (22.7 mg/g), DPPH radical scavenging activity (32.5), and ABTS radical scavenging activity (31.1) were observed at a drying temperature of $40^{\circ}C$ with an air velocity of 0.8 m/sec.

The Effects of Aprotinin Addition and Plastic Tube Usage for Glucagon Test Results (Glucagon 검사시 Aprotinin 첨가와 Plastic tube 사용이 미치는 영향)

  • Cho, Youn-Kyo;Choi, Sam-Kyu;Seo, So-Yeon;Shin, Yong-Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.117-120
    • /
    • 2011
  • Purpose: There are 3 warnings for Glucagon tests. First, EDTA tubes that already contain Aprotinin must be used for plasma collection. Second, for freezer storage of centrifuged plasma, glass tubes must be used. Last, glass tubes must be used for testing procedure. So we compared the glucagon results of next 3 situation to those of control group. First, We compared to results by tubes without Aprotinin and with aprotinin. Second, we compared to results by tubes(plastic vs glass) for plasma storage. Third, we compared to results by tubes(plastic vs glass) for testing. We tried to evaluate the results of the 3 different condition. Materials and Methods: 40 healthy adults were studied with normal results on the general medical check up and laboratory tests. We compared the results of 3 different condition belows: Blood were collected in EDTA tube containing aprotinin and plasma was stored in the glass tube for 3 days in a freezer and results were obtained by tests in the glass tubes. Results from EDTA plasma without aprotinin, results from platic tubes for freezer stroage, results from plastic tube when testing. Simple linear regression analysis and paired t-test using SPSS were done for statistical analysis. Commercial glucagon kit(RIA-method)which made by Siemens company were used. Results: Correlation coefficient between results of EDTA tubes with Aprotinin vs without Aprotinin was r=0.783 (p=0.064). Result of specimen in plastic tubes stored 3 days in a freezer showed lower value compared to those in glass tube(r=0.979, p=0.005). Also, results of testing in plastic tubes showed lower values than those testing in glass tubes. (r=0.754, p<0.001). Conclusion: It is recommended for glucagon determination to use EDTA tube with Aprotinin which is a inhibitor of protein breakdown enzyme. Results of plastic tube when storage and testing showed lower value than those of glass tubes, so it is recommended to store and test in glass tubes.

  • PDF

Establishment of Analytical Method for Methylmercury in Fish by Using HPLC-ICP/MS (고성능액체크로마토그래피-유도결합플라즈마 질량분석기를 이용한 어류 중 메틸수은 분석법 확립)

  • Yoo, Kyung-Yoal;Bahn, Kyeong-Nyeo;Kim, Eun-Jung;Kim, Yang-Sun;Myung, Jyong-Eun;Yoon, Hae-Seong;Kim, Mee-Hye
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.288-294
    • /
    • 2011
  • BACKGROUND: Methylmercury is analyzed by HPLC-ICP/MS because of the simplicity for sample preparation and interference. However, most of the pre-treatment methods for methylmercury need a further pH adjustment of the extracted solution and removal of organic matter for HPLC. The purpose of this study was to establish a rapid and accurate analytical method for determination of methylmercury in fish by using HPLC-ICP/MS. METHOD AND RESULTS: We conducted an experiment for pre-treatment and instrument conditions and analytical method verification. Pre-treatment condition was established with aqueous 1% L-cysteine HCl and heated at $60^{\circ}C$ in microwave for 20 min. Methylmercury in $50{\mu}L$ of filtered extract was separated by a C18 column and aqueous 0.1% L-cysteine HCl + 0.1% L-cysteine mobile phase at $25^{\circ}C$. The presence of cysteine in mobile phase and sample solution was essential to eliminate adsorption, peak tailing and memory effect problems. Correlation coefficient($r^2$) for the linearity was 0.9998. The limits of detection and quantitation for this method were 0.15 and $0.45{\mu}g/kg$ respectively. CONCLUSION: Result for analytical method verification, accuracy and repeatability of the analytes were in good agreement with the certified reference materials values of methylmercury at a 95% confidence level. The advantage of the established method is that the extracted solution can be directly injected into the HPLC column without additional processes and the memory effect of mercury in the ICP-MS can be eliminated.

Evaluation of stream flow and water quality changes of Yeongsan river basin by inter-basin water transfer using SWAT (SWAT을 이용한 유역간 물이동량에 따른 영산강유역의 하천 유량 및 수질 변동 분석)

  • Kim, Yong Won;Lee, Ji Wan;Woo, So Young;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1081-1095
    • /
    • 2020
  • This study is to evaluate stream flow and water quality changes of Yeongsan river basin (3,371.4 km2) by inter-basin water transfer (IBWT) from Juam dam of Seomjin river basin using SWAT (Soil and Water Assessment Tool). The SWAT was established using inlet function for IBWT between donor and receiving basins. The SWAT was calibrated and validated with 14 years (2005 ~ 2018) data of 1 stream (MR) and 2 multi-functional weir (SCW, JSW) water level gauging stations, and 3 water quality stations (GJ2, NJ, and HP) including data of IBWT and effluent from wastewater treatment plants of Yeongsan river basin. For streamflow and weir inflows (MR, SCW, and JSW), the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE), and percent bias (PBIAS) were 0.69 ~ 0.81, 0.61 ~ 0.70, 1.34 ~ 2.60 mm/day, and -8.3% ~ +7.6% respectively. In case of water quality, the R2 of SS, T-N, and T-P were 0.69 ~ 0.81, 0.61 ~ 0.70, and 0.54 ~ 0.63 respectively. The Yeongsan river basin average streamflow was 12.0 m3/sec and the average SS, T-N, and T-P were 110.5 mg/L, 4.4 mg/L, 0.18 mg/L respectively. Under the 130% scenario of IBWT amount, the streamflow, SS increased to 12.94 m3/sec (+7.8%), 111.26 mg/L (+0.7%) and the T-N, T-P decreased to 4.17 mg/L (-5.2%), 0.165 mg/L (-8.3%) respectively. Under the 70% scenario of IBWT amount, the streamflow, SS decreased to 11.07 m3/sec (-7.8%), 109.74 mg/L (-0.7%) and the T-N, T-P increased to 4.68 mg/L (+6.4%), 0.199 mg/L (+10.6%) respectively.

Determination of Appropriate Exposure Angles for the Reverse Water's View using a Head Phantom (두부 팬텀을 이용한 Reverse Water's View에 관한 적절한 촬영 각도 분석)

  • Lee, Min-Su;Lee, Keun-Ohk;Choi, Jae-Ho;Jung, Jae-Hong
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.187-195
    • /
    • 2017
  • Early diagnosis for upper facial trauma is difficult by using the standard Water's view (S-Water's) in general radiograph due to overlapping of anatomical structures, the uncertainty of patient positioning, and specific patients with obese, pediatric, old, or high-risk. The purpose of this study was to analyze appropriate exposure angles through a comparison of two different protocols (S-Water's vs. reverse Water's view (R-Water's)) by using a head phantom. A head phantom and general radiograph with 75 kVp, 400 mA, 45 ms 18 mAs, and SID 100 cm. Images of R-Water's were obtained by different angles in the range of $0^{\circ}$ to $50^{\circ}$, which adjusted an angle at 1 degree interval in supine position. Survey elements were developed and three observers were evaluated with four elements including the maxillary sinus, zygomatic arch, petrous ridge, and image distortion. Statistical significant analysis were used the Krippendorff's alpha and Fleiss' kappa. The intra-class correlation (ICC) coefficient for three observers were high with maxillary, 0.957 (0.903, 0.995); zygomatic arch, 0.939 (0.866, 0.987); petrous ridge, 0.972 (0.897, 1.000); and image distortion, 0.949 (0.830, 1.000). The high-quality image (HI) and perfect agreement (PA) for acquired exposure angles were high in range of the maxillary sinus ($36^{\circ}-44^{\circ}C$), zygomatic arch ($33^{\circ}-40^{\circ}$), petrous ridge ($32^{\circ}-50^{\circ}$), and image distortion ($44^{\circ}-50^{\circ}$). Consequently, an appropriate exposure angles for the R-Water's view in the supine position for patients with facial trauma are in the from $36^{\circ}$ to $40^{\circ}$ in this phantom study. The results of this study will be helpful for the rapid diagnosis of facial fractures by simple radiography.

Detecting Phenology Using MODIS Vegetation Indices and Forest Type Map in South Korea (MODIS 식생지수와 임상도를 활용한 산림 식물계절 분석)

  • Lee, Bora;Kim, Eunsook;Lee, Jisun;Chung, Jae-Min;Lim, Jong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.267-282
    • /
    • 2018
  • Despite the continuous development of phenology detection studies using satellite imagery, verification through comparison with the field observed data is insufficient. Especially, in the case of Korean forests patching in various forms, it is difficult to estimate the start of season (SOS) by using only satellite images due to resolution difference. To improve the accuracy of vegetation phenology estimation, this study reconstructed the large scaled forest type map (1:5,000) with MODIS pixel resolution and produced time series vegetation phenology curves from Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) derived from MODIS images. Based on the field observed data, extraction methods for the vegetation indices and SOS for Korean forests were compared and evaluated. We also analyzed the correlation between the composition ratio of forest types in each pixel and phenology extraction from the vegetation indices. When we compared NDVI and EVI with the field observed SOS data from the Korea National Arboretum, EVI was more accurate for Korean forests, and the first derivative was most suitable for extracting SOS in the phenology curve from the vegetation index. When the eight pixels neighboring the pixels of 7 broadleaved trees with field SOS data (center pixel) were compared to field SOS, the forest types of the best pixels with the highest correlation with the field data were deciduous forest by 67.9%, coniferous forest by 14.3%, and mixed forest by 7.7%, and the mean coefficient of determination ($R^2$) was 0.64. The average national SOS extracted from MODIS EVI were DOY 112.9 in 2014 at the earliest and DOY 129.1 in 2010 at the latest, which is about 0.16 days faster since 2003. In future research, it is necessary to expand the analysis of deciduous and mixed forests' SOS into the extraction of coniferous forest's SOS in order to understand the various climate and geomorphic factors. As such, comprehensive study should be carried out considering the diversity of forest ecosystems in Korea.

Estimating Grain Weight and Grain Nitrogen Content with Temperature, Solar Radiation and Growth Traits During Grain-Filling Period in Rice (등숙기 온도 및 일사량과 생육형질을 이용한 벼 종실중 및 종실질소함량 추정)

  • Lee, Chung-Kuen;Kim, Jun-Hwan;Son, Ji-Young;Yoon, Young-Hwan;Seo, Jong-Ho;Kwon, Young-Up;Shin, Jin-Chul;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.275-283
    • /
    • 2010
  • This experiment was conducted to construct process models to estimate grain weight (GW) and grain nitrogen content (GN) in rice. A model was developed to describe the dynamic pattern of GW and GN during grain-filling period considering their relationships with temperature, solar radiation and growth traits such as LAI, shoot dry-weight, shoot nitrogen content, grain number during grain filling. Firstly, maximum grain weight (GWmax) and maximum grain nitrogen content (GNmax) equation was formulated in relation to Accumulated effective temperature (AET) ${\times}$ Accumulated radiation (AR) using boundary line analysis. Secondly, GW and GN equation were created by relating the difference between GW and GWmax and the difference between GN and GNmax, respectively, with growth traits. Considering the statistics such as coefficient of determination and relative root mean square of error and number of predictor variables, appropriate models for GW and GN were selected. Model for GW includes GWmax determined by AET ${\times}$ AR, shoot dry weight and grain number per unit land area as predictor variables while model for GN includes GNmax determined by AET ${\times}$ AR, shoot N content and grain number per unit land area. These models could explain the variations of GW and GN caused not only by variations of temperature and solar radiation but also by variations of growth traits due to different sowing date, nitrogen fertilization amount and row spacing with relatively high accuracy.

Simultaneous estimation of fatty acids contents from soybean seeds using fourier transform infrared spectroscopy and gas chromatography by multivariate analysis (적외선 분광스펙트럼 및 기체크로마토그라피 분석 데이터의 다변량 통계분석을 이용한 대두 종자 지방산 함량예측)

  • Ahn, Myung Suk;Ji, Eun Yee;Song, Seung Yeob;Ahn, Joon Woo;Jeong, Won Joong;Min, Sung Ran;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.60-70
    • /
    • 2015
  • The aim of this study was to investigate whether fourier transform infrared (FT-IR) spectroscopy can be applied to simultaneous determination of fatty acids contents in different soybean cultivars. Total 153 lines of soybean (Glycine max Merrill) were examined by FT-IR spectroscopy. Quantification of fatty acids from the soybean lines was confirmed by quantitative gas chromatography (GC) analysis. The quantitative spectral variation among different soybean lines was observed in the amide bond region ($1,700{\sim}1,500cm^{-1}$), phosphodiester groups ($1,500{\sim}1,300cm^{-1}$) and sugar region ($1,200{\sim}1,000cm^{-1}$) of FT-IR spectra. The quantitative prediction modeling of 5 individual fatty acids contents (palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid) from soybean lines were established using partial least square regression algorithm from FT-IR spectra. In cross validation, there were high correlations ($R^2{\geq}0.97$) between predicted content of 5 individual fatty acids by PLS regression modeling from FT-IR spectra and measured content by GC. In external validation, palmitic acid ($R^2=0.8002$), oleic acid ($R^2=0.8909$) and linoleic acid ($R^2=0.815$) were predicted with good accuracy, while prediction for stearic acid ($R^2=0.4598$), linolenic acid ($R^2=0.6868$) had relatively lower accuracy. These results clearly show that FT-IR spectra combined with multivariate analysis can be used to accurately predict fatty acids contents in soybean lines. Therefore, we suggest that the PLS prediction system for fatty acid contents using FT-IR analysis could be applied as a rapid and high throughput screening tool for the breeding for modified Fatty acid composition in soybean and contribute to accelerating the conventional breeding.