• Title/Summary/Keyword: Coefficient Of Performance

Search Result 4,665, Processing Time 0.034 seconds

Digital PID controller design adopting the delta transforms ($\delta$ 변환을 채택한 디지틀 PID 제어기 설계)

  • 김인중;홍석민;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.981-986
    • /
    • 1992
  • In order to implement the digital PID control algorithm, it is necessary to consider the effect of the finite word length(FWL). In this paper, we show the FWL effect in the digital PID controllers. The conception analyse the effects of the signal quantization error in the digital PID algorithm and the coefficient wordlength determined from performance criteria with the statistical wordlength concept. Throughout this paper, it is dealt with the type of controller structure based delta operator the delta operator has such advantages are superior rounfoff noise perfoff noise performance, more accurate coefficient repersentation, and less sensitive control law.

  • PDF

A study regarding service quality factors from performance arts (공연예술에서 서비스품질 요소에 관한 연구)

  • Kim, Myung-Hoon;Lee, Sang-Bok
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2007.04a
    • /
    • pp.123-130
    • /
    • 2007
  • In this Paper, we try to find service quality factors form performance arts. We survey Customers Performance and make a Questionnaire based on Customer by interview and internet Homepage. We find Potential customer satisfying factor by using Kano Analysis and Timko's CS coefficient. We also discuss how to use this result, we hope our result to apply customer satisfying many fields not only Performance arts.

  • PDF

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

A Theoretical Study on the Dynamic Characteristics of Damping Flexible Coupling(I) (유체감쇠 커플링의 동특성에 관한 이론적 연구(I))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 1994
  • The present works are the theoretical results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. It is established the analysis scheme of the multiple-leaf spring, to obtain the static coefficient of stiffness of the coupling. Also, the dynamic coefficient of stiffness and the damping coefficient of the coupling are indentified through the flow analysis for a induced flow of working fluid by the deflection of multiple-leaf springs. This paper dealt with damping contributions by the friction between each plate of the multiple-leaf spring. In this paper, it is found that the dynamic characteristics of the damping flexible coupling are strongly dependent on the stiffness and the number of the multiple-leaf spring, and also vary with the viscosity of working fluid and the vibration speed of the inner star.

  • PDF

Drainage Performance of Various Subsurface Drain Materials- (배수개선공법개발에 관한 연구(I) -각종 지하배수용 암거재료의 배수성능-)

  • 김철회;이근후;유시조;서원명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.3
    • /
    • pp.104-120
    • /
    • 1979
  • I. Title of the Study Studies on the Development of Improved Subsurface Drainage Methods. -Drainage Performance of Various Subsurface Drain Materials- II. Object of the Study Studies were carried out to select the drain material having the highest performance of drainage; And to develop the water budget model which is necessary for the planning of the drainage project and the establishment of water management standards in the water-logged paddy field. III. Content and Scope of the Study 1. The experiment was carried out in the laboratory by using a sand tank model. The drainage performance of various drain materials was compared evaluated. 2. A water budget model was established. Various parameters necessary for the model were investigated by analyzing existing data and measured data from the experimental field. The adaptability of the model was evaluated by comparing the estimated values to the field data. IV. Results and Recommendations 1. A corrugated tube enveloped with gravel or mat showed the highest drainage performance among the eight materials submmitted for the experiment. 2. The drainage performance of the long cement tile(50 cm long) was higher than that of the short cement tile(25 cm long). 3. Rice bran was superior to gravel in its' drain performance. 4. No difference was shown between a grave envelope and a P.V.C. wool mat in their performance of drainage. Continues investigation is needed to clarify the envelope performance. 5. All the results described above were obtained from the laboratory tests. A field test is recommended to confirm the results obtained. 6. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as follows; $$D=\Sigma\limit_{t=1}^{n}(Et-R_{\ell}-I+W_d)..........(17)$$ 7. Among the various empirical formulae for potential evapotranspiration, Penman's formular was best fit to the data observed with the evaporation pans in Jinju area. High degree of positive correlation between Penman;s predicted data and observed data was confirmed. The regression equation was Y=1.4X-22.86, where Y represents evaporation rate from small pan, in mm/100 days, and X represents potential evapotranspiration rate estimated by Penman's formular. The coefficient of correlation was r=0.94.** 8. To estimate evapotranspiration in the field, the consumptive use coefficient, Kc, was introduced. Kc was defined by the function of the characteristics of the crop soil as follows; $Kc=Kco{\cdot}Ka+Ks..........(20)$ where, Kco, Ka ans Ks represents the crop coefficient, the soil moisture coefficient, and the correction coefficient, respectively. The value of Kco and Ka was obtained from the Fig.16 and the Fig.17, respectively. And, if $Kco{\cdot}Ka{\geq}1.0,$ then Ks=0, otherwise, Ks value was estimated by using the relation; $Ks=1-Kco{\cdot}Ka$. 9. Into type formular, $r_t=\frac{R_{24}}{24}(\frac{b}{\sqrt{t}+a})$, was the best fit one to estimate the probable rainfall intensity when daily rainfall and rainfall durations are given as input data, The coefficient a and b are shown on the Table 16. 10. Japanese type formular, $I_t=\frac{b}{\sqrt{t}+a}$, was the best fit one to estimate the probable rainfall intensity when the rainfall duration only was given. The coefficient a and b are shown on the Table 17. 11. Effective rainfall, Re, was estimated by using following relationships; Re=D, if $R-D\geq}0$, otherwise, Re=R. 12. The difference of rainfall amount from soil moisture depletion was considered as the amount of drainage required. In this case, when Wd=O, Equation 24 was used, otherwise two to three days of lag time was considered and correction was made by use of storage coefficient. 13. To evaluate the model, measured data and estimated data was compared, and relative error was computed. 5.5 percent The relative error was 5.5 percent. 14. By considering the water budget in Jinju area, it was shown that the evaporation amount was greater than the rainfall during period of October to March in next year. This was the behind reasonning that the improvement of surface drainage system is needed in Jinju area.

  • PDF

A new Ensemble Clustering Algorithm using a Reconstructed Mapping Coefficient

  • Cao, Tuoqia;Chang, Dongxia;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2957-2980
    • /
    • 2020
  • Ensemble clustering commonly integrates multiple basic partitions to obtain a more accurate clustering result than a single partition. Specifically, it exists an inevitable problem that the incomplete transformation from the original space to the integrated space. In this paper, a novel ensemble clustering algorithm using a newly reconstructed mapping coefficient (ECRMC) is proposed. In the algorithm, a newly reconstructed mapping coefficient between objects and micro-clusters is designed based on the principle of increasing information entropy to enhance effective information. This can reduce the information loss in the transformation from micro-clusters to the original space. Then the correlation of the micro-clusters is creatively calculated by the Spearman coefficient. Therefore, the revised co-association graph between objects can be built more accurately because the supplementary information can well ensure the completeness of the whole conversion process. Experiment results demonstrate that the ECRMC clustering algorithm has high performance, effectiveness, and feasibility.

Experiment and Performance Prediction on Inherent Flow Coefficient of a Solenoid Valve (솔레노이드 밸브의 고유유량계수에 대한 실험과 성능예측)

  • Lee, Joong-Youp;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.70-78
    • /
    • 2011
  • The Equations of inherent flow coefficient are different from compressible to incompressible flow. The paper has been conducted to measure the inherent flow coefficient of solenoid valve under various flows. Experimental results for compressible and incompressible flow were confirmed to inherent flow coefficient correctly. The value of inherent flow coefficient for the 0.5" solenoid valve is about 2. Dynamic characteristics of a solenoid valve, which plays an important role in real model, have been analysed by AMESim simulator modeling.

Deep learning-based Approach for Prediction of Airfoil Aerodynamic Performance (에어포일 공력 성능 예측을 위한 딥러닝 기반 방법론 연구)

  • Cheon, Seongwoo;Jeong, Hojin;Park, Mingyu;Jeong, Inho;Cho, Haeseong;Ki, Youngjung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.17-27
    • /
    • 2022
  • In this study, a deep learning-based network that can predict the aerodynamic characteristics of airfoils was designed, and the feasibility of the proposed network was confirmed by applying aerodynamic data generated by Xfoil. The prediction of aerodynamic characteristics according to the variation of airfoil thickness was performed. Considering the angle of attack, the coordinate data of an airfoil is converted into image data using signed distance function. Additionally, the distribution of the pressure coefficient on airfoil is expressed as reduced data via proper orthogonal decomposition, and it was used as the output of the proposed network. The test data were constructed to evaluate the interpolation and extrapolation performance of the proposed network. As a result, the coefficients of determination of the lift coefficient and moment coefficient were confirmed, and it was found that the proposed network shows benign performance for the interpolation test data, when compared to that of the extrapolation test data.

Robust Speech Recognition Parameters for Emotional Variation (감정 변화에 강인한 음성 인식 파라메터)

  • Kim Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.655-660
    • /
    • 2005
  • This paper studied the feature parameters less affected by the emotional variation for the development of the robust speech recognition technologies. For this purpose, the effect of emotional variation on the speech recognition system and robust feature parameters of speech recognition system were studied using speech database containing various emotions. In this study, LPC cepstral coefficient, met-cepstral coefficient, root-cepstral coefficient, PLP coefficient, RASTA met-cepstral coefficient were used as a feature parameters. And CMS and SBR method were used as a signal bias removal techniques. Experimental results showed that the HMM based speaker independent word recognizer using RASTA met-cepstral coefficient :md its derivatives and CMS as a signal bias removal showed the best performance of $7.05\%$ word error rate. This corresponds to about a $52\%$ word error reduction as compare to the performance of baseline system using met - cepstral coefficient.

A Conceptual Framework to Study the Effectiveness of Interface Management in Construction Projects

  • KEERTHANAA, K.;SHANMUGAPRIYA, S.
    • Journal of Construction Engineering and Project Management
    • /
    • v.9 no.3
    • /
    • pp.1-21
    • /
    • 2019
  • The management of mega construction projects which incorporate a large number of stakeholders, technologies, data, work culture etc., is cumbersome. The experts in the construction arena advocate that interface management serves as a precise tool in resolving these conflict points due to the intricate nature of the construction projects. Interface management is a current trending management practice in the construction industry which is also a beneficiary to mega/fast track projects in enhancing the project performance. The main objective of this study is to validate a model for assessing the relationships among interface management, IT applications, project performance & project benefits. The mediating effect of interface management in relationship between project performance & interfacial factors was also investigated. The research model was validated using PLS-SEM (Partial Least Square-Structural Equation Modelling) approach. Data were collected from clients, contractors, consultants in large scale projects through questionnaire survey and smart-PLS software was used to analyse the conceptual model. The research model comprises eleven hypothesis and the significance of these hypothesis were tested using T- statistics values. The research implies that people/participants factor is greatly influenced by interface management with the path coefficient of 0.608 and also enhancement of project's schedule performance due to the interface management is strongly appealing (Path coefficient = 0.711). The results also reveal IT application is significantly associated with interface management practice (Path coefficient =0.723) and also the effect of IT application on project performance (schedule, cost, quality & safety) is successfully mediated through interface management practice. The practical application of this validated model was done through case study. The case study aims at measuring the impact of interface management on interfacial factors and role of interface management in improving the project performance in the construction organisations.