• Title/Summary/Keyword: Coating solution

Search Result 1,318, Processing Time 0.029 seconds

The Electrocatalytic Reduction of Molecular Oxygen with Clay Modified Electrodes (점토광물을 이용한 산소환원의 전기화학적 촉매성에 관한 연구)

  • Oh Sung-Hun;Hwang Jin-Yeon;Shim Yoon-Bo;Lee Hyomin;Yoon Jihae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The electrocatalytic reduction of O₂ was investigated with methyl viologen and methylene blue incorporated clay-modified electrodes. Clay suspensions were prepared with Na-montmorillonite, Ca-montmorillonite, and kaolinite. The methyl viologen-clay modified electrodes were made by coating clay suspensions adsorbing methyl viologen on a glassy carbon electrode. Cyclic voltammetry were performed in aqueous media to investigate the electrocatalytic property of the modified electrode in reducing O₂. A Na-montmorillonite modified electrode showed the greatest adsorption capacity for methyl viologen. The modified electrode made of Na-montmorillonite suspension of 0.87 g/10 mL and a 2.5 mM of methyl viologen solution showed the most effective electrocatalytic property, where the catalytic reduction potential was shifted by 242.6 mV toward the positive potential. The electrocatalytic ability was more significant in acidic (pH=3.7) and alkaline (pH=12.7) media than the neutral pH range (6.3∼8.3). The methyl viologen-Na-montmorillonite modified electrode had the good reproducibility and maintain the electrocatalytic property over 20 times reuse.

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

Wound Healing Effect of Low Molecular PDRN on Experimental Surgical Excision Rat Model (저분자화된 Polydeoxynucleotide (PDRN)의 흰쥐에 대한 외과적 창상 치유 효과)

  • Yun, Jong-Kuk;Yoon, Hye-Eun;Park, Jeong-Kyu;Kim, Mi Ryeo;Kim, Dae-Ik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.401-411
    • /
    • 2015
  • This study was performed to investigate the wound healing effect of skin regeneration cosmetics utilizing low molecular weight Polydeoxynucleotide (PDRN). High purity PDRN was prepared from salmon testes poly-deoxy-ribonucleotide through protein and toxin removal process and molecular weight reduction. In order to evaluate the wound healing effect of PDRN in SD rats, 4 sites of dorsal skin of each animal were excised by using biopsy punch and $500{\mu}L$ of test solution was topically applied once daily for 4 weeks. The tissue changes were observed for every week during the application periods. After applying the PDRN to the wound, the skin was cut flower and contraction of the wounds more quickly, and the coating of PDRN in the wound area was reduced significantly as compared to the positive control group $Fucidin^{(R)}$ applied. The microscopic observation of stained tissue showed that a positive control was most rapid in re-epithelialization ability followed by the PH group, PDRN group, HA group. In addition, transforming growth factor ($TGF-{\beta}$) and vascular endothelial growth factor (VEGF), such as in the growth factor was similar to the results of staining of tissue lesions. In conclusion, it is determined that the low molecular weight PDRN has the therapeutic effect to the wound, and could be used as a functional material of cosmetics and medical industries.

The Application of an EU REACH Protocol to the Occupational Exposure Assessment of Methanol: Targeted Risk Assessment (메탄올 작업장 노출 평가에의 EU REACH 프로토콜 적용: Targeted Risk Assessment)

  • Ra, Jin-Sung;Song, Moon Hwan;Choe, Eun Kyung
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.432-445
    • /
    • 2021
  • Background: The European Centre for Ecotoxicology and Toxicology of Chemicals' Targeted Risk Assessment (ECETOC TRA) tool has been recognized by EU REACH as a preferred approach for calculating worker health risks from chemicals. Objectives: The applicability of the ECETOC TRA to occupational exposure estimation from industrial uses of methanol was studied by inputting surveyed and varied parameters for TRA estimation as well as through comparison with measured data. Methods: Information on uses of methanol was collected from seven working environment monitoring reports along with the measured exposure data. Input parameters for TRA estimation such as operating conditions (OCs), risk management measures (RMMs) and process categories (PROCs) were surveyed. To compare with measured exposures, parameters from the surveyed conditions of ventilation but no use of respiratory protection were applied. Results: PROCs 4, 5, 8a, 10, and 15 were assigned to ten uses of methanol. The uses include as a solvent for manufacturing sun cream, surfactants, dyestuffs, films and adhesives. Methanol was also used as a component in a release agent, hardening media and mold wash for cast products as well as a component of hard-coating solution and a viscosity-controlling agent for manufacturing glass lenses. PROC 8a and PROC 10 of a cast product manufacturer without LEV (local exhaust ventilation) and general ventilation as well as no respiratory protection resulted in the highest exposure to methanol. Assuming the identical worst OCs and RMMs for all uses, exposures from PROC 5, 8a, and 10 were the same and the highest followed by PROC 4 and 15. The estimation resulted in higher exposures in nine uses except one use where measured exposure approximated exposures without RMMs. Conclusions: The role of ECETOC TRA as a conservative exposure assessment tool was confirmed by comparison with measured data. Moreover, it can guide which RMMs should be applied for the safe use of methanol.

Evaluation of Titanium-nitride Coated Crown: Surface Hardness, Corrosion Resistance and Color Sustainability (타이타늄-질소 코팅된 금속관에 대한 평가: 표면 경도, 부식 저항성, 색조 안정성)

  • Kim, Hyojin;Lim, Sumin;Kim, JinYoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.3
    • /
    • pp.344-351
    • /
    • 2021
  • The purpose of this study was to compare surface hardness between titanium-nitride coated crowns (TiNCs) and stainless steel crowns (SSCs), and to evaluate the corrosion resistance and color sustainability of TiNCs. Ten TiNCs and 10 SSCs were used for the hardness test. Measurement was performed 30 times for each type of crowns, and the mean values were compared. Metallic raw material plates (before being processed into crowns) of TiNCs and SSCs were prepared for the corrosion resistance test. The total amounts of metal ion releases in the test solution were detected by inductively coupled plasma-optical emission spectrometry. Five TiNCs were subjected to the color sustainability test by applying repetitive brushing forces. The mean hardness values of TiNC group and SSC group were 395.53 ± 105.90 Hv and 278.70 ± 31.45 Hv respectively. Hardness of TiNCs were significantly higher than that of SSCs. The total amounts of metal ion releases from the materials of TiNCs and SSCs satisfied the criterion in International Organization for Standardization 22674. The results mean that TiNCs and SSCs were not harmful in an acidic environment. The golden coating was stable against the repetitive physical stimulations for a given period time.

Corrosion Behaviors of TiN Coated Dental Casting Alloys (TiN피막 코팅된 치과주조용 합금의 부식거동)

  • Jo, Ho-Hyeong;Park, Geun-Hyeng;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.129-137
    • /
    • 2009
  • Corrosion behaviors of TiN coated dental casting alloys have been researched by using various electrochemical methods. Three casting alloys (Alloy 1: 63Co-27Cr-5.5Mo, Alloy 2: 63Ni-16Cr-5Mo, Alloy 3: 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting(CF), high frequency induction casting(HFI) and vacuum pressure casting(VP). The specimens were coated with TiN film by RF-magnetron sputtering method. The corrosion behaviors were investigated using potentiostat (EG&G Co, 263A. USA) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion morphologies were analyzed using FE-SEM and EDX. Alloy 1 and Alloy 2 showed the ${\alpha}-Co$ and ${\varepsilon}-Co$ phase on the matrix, and it was disappeared in case of TiN coated Alloy 1 and 2. In the Alloy 3, $Ni_2Cr$ second phases were appeared at matrix. Corrosion potentials of TiN coated alloy were higher than that of non-coated alloy, but current density at passive region of TiN coated alloy was lower than that of non-coated alloy. Pitting corrosion resistances were increased in the order of centrifugal casting, high frequency induction casting and vacuum pressure casting method from cyclic potentiodynamic polarization test.

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

Structural and Electrical Properties of La0.7Sr0.3MnO3 Thin Films for Thermistor Applications (서미스터로의 응용을 위한 La0.7Sr0.3MnO3 박막의 구조적, 전기적 특성)

  • Lim, Jeong-Eun;Park, Byeong-Jun;Yi, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Kim, Byung-Cheul;Kim, Young-Gon;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.499-503
    • /
    • 2022
  • La0.7Sr0.3MnO3 precursor solution were prepared by a sol-gel method. La0.7Sr0.3MnO3 thin films were fabricated by a spin-coating method on a Pt/Ti/SiO2/Si substrate. Structural and electrical properties with the variation of sintering temperature were measured. All specimens exhibited a polycrystalline orthorhombic crystal structure, and the average thickness of the specimens coated 6 times decreased from about 427 nm to 383 nm as the sintering temperature increased from 740℃ to 830℃. Electrical resistance decreased as the sintering temperature increased. In the La0.7Sr0.3MnO3 thin films sintered at 830℃, electrical resistivity, TCR, B-value, and activation energy were 0.0374 mΩ·cm, 0.316%/℃, 296 K and 0.023 eV, respectively.

Structural and Electrical Properties of (La0.7Sr0.3)(Mn1-xFex)O3 Thin Films Prepared by Sol-Gel Method for Thermistor Devices (서미스터 소자로의 응용을 위한 솔-젤법으로 제작한 (La0.7Sr0.3)(Mn1-xFex)O3 박막의 구조적, 전기적 특성)

  • Ji-Su Yuk;Sam-Haeng Yi;Myung-Gyu Lee; Joo-Seok Park;Young-Gon Kim;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.164-168
    • /
    • 2024
  • (La0.7Sr0.3)(Mn1-xFex)O3 (LSMFO) (x = 0.03, 0.06, 0.09, 0.12) precursor solution are prepared by sol-gel method. LSMFO thin films are fabricated by the spin-coating method on Pt/Ti/SiO2/Si substrate, and the sintering temperature and time are 800℃ and 1 hr, respectively. The average thickness of the 6-times coated LSMFO films is about 181 to 190 nm and average grain size is about 18 to 20 nm. As the amount of Fe added in the LSMFO thin film increased, the resistivity decreased, and the TCR and B25/65-value increased. Electrical resistivity, TCR and B25/65-value of the (La0.7Sr0.3)(Mn0.88Fe0.12)O3 thin film are 0.0136 mΩ-cm, 0.358%/℃, and 328 K at room temperature, respectively. The resistivity properties of LSMFO thin films matched well with Mott's VRH model.

Studies on Processing and Keeping Quality of Retort Pouched Foods (5) Preparation and Keeping Quality of Retort Pouched Seasoned Ark Shell (레토르트파우치 식품의 가공 및 품질안정성에 관한 연구 (5) 레토르트파우치 조미피조개제품의 제조 및 품질안정성)

  • LEE Eung-Ho;OH Kwang-Soo;AHN Chang-Bum;LEE Tae-Hun;CHUNG Young-Hoon;SHIN Keun-Jin;KIM Woo-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.2
    • /
    • pp.109-117
    • /
    • 1986
  • For the purpose of obtaining basic data which can be applied to processing of retort pouched shellfishes, retort pouched seasoned ark shell, Anadara broughtonii, was prepared. The frozen ark shell was thawed and seasoned with a mixed seasoning powder prepared with $10.0\%$ of sorbitol, $2.0\%$ of table salt and $0.5\%$ of monosodium glutamate at $5^{\circ}C$ for 10 hours, and then dried at $45^{\circ}C$ for 4 hours. The dried seasoned ark shell was coated with $1.0\%$ sodium alginate solution, dried with cola air blast for 2 hours and then vacuum-packed in the laminated plastic film bag (polyester/casted polypropylene= $12{\mu}m/70{\mu}m,\;15{\times}16cm$), and finally sterilized up to Fo=6.0 in hot water circulating retort at $121^{\circ}C$ for 10 minutes. The major fatty acids of raw ark shell and retort pouched seasoned ark shell products were 16:0, 20:5, 22:6, 18:0 and 18:3, and predominant free amino acids of those were lysine, arginine, glycine, alanine, glutamic acid and leucine. In nucleotides and its related compounds of raw ark shell and retort pouched seasoned ark shell products, the most abundant one was AMP, and total extract-N of those was chiefly consisted of free amino acids, betaine and nucleotide and its related compounds. During the processing procedure such as drying and sterilization, unsaturated fatty acids slightly decreased while saturated fatty acids increased, and total extract-N content decreased about a half. From the results of chemical and microbial experiments during storage, it was concluded that the products could be preserved in a good condition for 100 days at room temperature, and their duality could be improved by the coating treatment of sodium alginate solution.

  • PDF