• 제목/요약/키워드: Coating fracture

검색결과 176건 처리시간 0.024초

플라즈마 용사된 $\textrm{Cr}_2\textrm{O}_3$ 층의 연삭특성 (Grinding Characteristics of the Plasma-Sprayed $\textrm{Cr}_2\textrm{O}_3$ Coating Layer)

  • 김병희;서동수
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.18-24
    • /
    • 1999
  • This study was performed to observe the surface roughness and microstructural change of the grinding surface of plasma sprayed $Cr_2$$O_3$coating layer. The experimental condition were particle size of diamond grinding stone, depth of cut, rotating speed and coolant feed. As a results, the grinding conditions influencing on the surface roughness and microstructure were depth of cut and the particle size of diamond grinding stone. In addition to the conversion of brittle-ductile fracture of grinding surface on depth of cut is $5~10\mu\textrm{m}$ and rotating speed was 100 r.p.m after grinding

  • PDF

TiN 박막의 탄소성 유한요소해석 (Elastic-Plastic Finite Element Analysis of TiN Thin Film)

  • 김정실;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.331-340
    • /
    • 2001
  • Elastic-Plasitc Finite element analysis is peformed about the TiN coated medium. The normal contact is simulated by a rigid asperity pressing the surface of an elastic-plastic half-surface. The case of a surface film stiffer than the substrate is considered, and general solutions for the subsurface stress and deformation fields are presented for several coating thickness. Additionally, the critical normal loads for deformation in the substrate and coating fracture are calculated when the yield of TiN film follows the Maximum Principal Stress Theory and Von Mises Theory. The results can be subsumed in failure maps for TiN thin film on steel.

  • PDF

Numerical analysis of plasma-sprayed ceramic coatings for high-temperature applications

  • St. Doltsinis, Ioannis;Haller, Kai-Uwe;Handel, Rainer
    • Structural Engineering and Mechanics
    • /
    • 제4권6호
    • /
    • pp.679-702
    • /
    • 1996
  • The finite element method is employed in conjunction with micromechanical modelling in order to assess the performance of ceramic thermal barrier coatings applied to structural components. The study comprises the conditions of the deposition of the coating by plasma spraying as well as the thermal cycling of the coated component, and it addresses particularly turbine blades. They are exposed to high temperature changes strongly influencing the behaviour of the core material and inducing damage in the ceramic material by intense straining. A concept of failure analysis is discussed starting from distributed microcracking in the ceramic material, progressing to the formation of macroscopic crack patterns and examining their potential for propagation across the coating. The theory is in good agreement with experimental observations, and may therefore be utilized in proposing improvements for a delayed initiation of failure, thus increasing the lifetime of components with ceramic thermal barrier coatings.

Development of $Al_2O_3-Ni$ FGMs Produced by Spark Plasma Sintering

  • Casari, Francesco;Zadra, Mario;Girardini, Luca;Molinari, Alberto
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.87-88
    • /
    • 2006
  • Ceramic-Metal Functionally Graded Materials (FGM) are of great interest for application as Thermal Barrier Coating (TBC) or Wear Resistant Coating (WRC). Spark Plasma Sintering (SPS) is a promising techniques for time-saving consolidation of laminated/graduated powder systems: SPS is a pressure-assisted electrical sintering method which directly applies a pulsed DC current as heat source. In the present work, production of $Al_2O_3-Ni$ FGMs by means of Spark Plasma Sintering is considered; effect of sintering condition on density, hardness and fracture toughness is studied. Problems correlated to this new processing technology are discussed.

  • PDF

HCD플라즈마를 이용한 반응성 이온플레이팅법에 의한 TiN 코팅 (TiN coatings by HCD plasma enhanced reactive ion plating method)

  • 서용운;황기웅
    • 한국표면공학회지
    • /
    • 제25권3호
    • /
    • pp.133-143
    • /
    • 1992
  • Titanium nitride(TiN) films have been prepared by HCD plasma enhanced reactive ion plating. Density and temperature of the plasma generated by the HCD were investigated. It was shown that parameters such as the substrate bias voltage(0 350V) and N2 flow rate(10 180SCCM) influenced the growth, the growth, the microstructure and the color tone of the film mostly. In order to study the interface region, surface analysis by AES combined with sputter depth profiling was performed. Microhardness of the coated TiN films were measured by micro Vickers hardness tester. Also, the effect of coating parameters on composition, coating surface and fracture morphology, grain size and growth rate were examined.

  • PDF

대기 플라즈마 용사 공정에 의해 제조된 철계합금-몰리브덴 혼합 코팅층의 미세조직 및 내마모성 (Correlation of Microstructure and Tribological Properties of Mo Blended Fe-Base Coatings Fabricated by Atmospheric Plasma Spraying)

  • 이일주;박형준;이창희
    • Journal of Welding and Joining
    • /
    • 제32권5호
    • /
    • pp.65-71
    • /
    • 2014
  • Atmospheric plasma spraying (APS) is world-widely used process in the automotive industry as a method to provide wear resistance coatings for engine cylinder bore, using various materials. The weight of engine blocks can be considerably decreased by removing cast iron liners, which can finally result in the improvement of fuel efficiency. In this study, five kinds of powder materials, 1.2C steel powder and 1.2C steel powder mixed with 5, 10, 15, 20 wt.%. molybdenum powder, were deposited by atmospheric plasma spraying in order to investigate the effect of molybdenum on the wear resistance of coatings. Microstructural analysis showed that molybdenum splats were well distributed in 1.2C steel matrix with intimate bonding. The molybdenum added coatings showed better tribological properties than 1.2C steel coating. However, above the 15 wt.%. blending fraction, wear resistance was somewhat degraded with poor roughness of worn surface due to the brittle fracture occurred in molybdenum splats. Consequently, compared to conventional liner material, gray cast iron, 10 wt. pct. molybdenum blended 1.2C steel coating showed much better tribological properties and therefore it looks very feasible to replace gray cast iron liner.

침상 코크스의 피치 코팅에 따른 리튬 이차전지 탄소계 음극소재의 전기화학적 특성 (Electrochemical Properties of Needle Coke through a Simple Carbon Coating Process for Lithium Ion Battery)

  • 황진웅;이종대;임지선
    • 공업화학
    • /
    • 제31권5호
    • /
    • pp.514-519
    • /
    • 2020
  • 흑연 소재는 높은 구조적 안정성 및 낮은 가격으로 리튬 이차전지 음극소재로 이용되고 있다. 또한, 탄소 소재의 낮은 속도 특성을 개선하려는 탄소 코팅 연구가 활발히 진행되고 있다. 탄소 코팅은 화학적 반응을 이용하는 CVD 코팅, 용매를 사용하는 습식 코팅, 기계적 충돌에 의한 건식 코팅으로 나뉜다. 본 논문에서는 습식 코팅 공정에서 사용 용매에 따라 탄소 전구체(피치)의 일부만 사용될 수 있는 문제와 용매 제거에 의한 환경 문제를 해결하고자 건식 공정인 고속 분쇄/코팅 공정을 이용하여 리튬 이차전지 음극용 탄소 소재를 제조하였다. 침상 코크스와 피치의 무게비는 8 : 2 wt.%으로 하고, 고속 분쇄/코팅 공정을 이용하여 침상 코크스의 분쇄와 피치의 코팅을 통한 구상화를 진행하였을 때, 침상 코크스의 모서리 면이 피치로 코팅되는 것을 확인하였다. 이 소재를 2400 ℃ 고온 열처리를 진행한 결과 피치 코팅되지 않은 소재와 비교하여 초기용량과 효율은 큰 차이를 보이지 않았으나, 10C/0.1C 속도 특성에서 41.8%의 성능이 향상되었다. 고속 분쇄/코팅 공정을 통해 제조된 소재는 고속 방전용 리튬 이차전지 음극 소재에 사용될 수 있을 것으로 생각된다.

하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진 (Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder)

  • 윤유현;이종국
    • 한국재료학회지
    • /
    • 제33권8호
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

세라믹공구 재료의 피복특성에 관한 연구 (A Study on the Coated Characteristics of Ceramic Tools)

  • 이명제;임홍섭;유봉환
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.900-906
    • /
    • 2000
  • Ceramic, PCD and CBN tools are available for the difficult-to-cut-materials such as hardened carbon tool steel, stainless steel, Inconel 718 and etc. Ceramic tools are likely to be chipped and abruptly broken before the appearance of normal wear in turning. Ceramic tools are suitable for continuous in turning, not for intermittent in milling. In this study, TiN/TiCN multi-layer coated ceramic tools were found to restrain the chipping, breaking and early fracture and to increase the critical cutting speed owing to TiN/TiCN multi-layer coating in Arc Ion Plating of PVD method.

Nicalon 섬유강화 SiC 복합재료에서 섬유 Coating층의 두께가 기계적 성질에 미치는 영향 (Effect of Interlayer Thickness on Mechanical Properties of Nicalon-Fiber-Reinfored SiC Composites)

  • 김민수;김영욱;이준근;정덕수
    • 한국세라믹학회지
    • /
    • 제30권7호
    • /
    • pp.549-556
    • /
    • 1993
  • Interfacial shear strength plays an important role in determining the mechanical properties of a fiber-reinforced ceramic composites. In this study, the effect ofinterlayer thickness on mechanical properties of Nicalon-fiber-reinforced SiC composites fabricated via polymer solution infiltration/chemical vapor infiltration (PSI/CVI) was studied. It was found that the flexural strength and fracture toughness of the composites were increased with the interlayer thickness and showed maximum value at the interlayer thickness of 0.66${\mu}{\textrm}{m}$. Typical flexural strength and fracture toughness of Nicalon-fiber-reinforced SiC composites with interlayer thickness of 0.66${\mu}{\textrm}{m}$ were 391.7$\pm$34.6MPa and 15.1$\pm$1.8MPa.m1/2, respectively.

  • PDF