DOI QR코드

DOI QR Code

Electrochemical Properties of Needle Coke through a Simple Carbon Coating Process for Lithium Ion Battery

침상 코크스의 피치 코팅에 따른 리튬 이차전지 탄소계 음극소재의 전기화학적 특성

  • Hwang, Jin Ung (Korea Research Institute of Chemical Technology) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University) ;
  • Im, Ji Sun (Korea Research Institute of Chemical Technology)
  • 황진웅 (한국화학연구원 C1가스.탄소융합연구센터) ;
  • 이종대 (충북대학교 화학공학과) ;
  • 임지선 (한국화학연구원 C1가스.탄소융합연구센터)
  • Received : 2020.08.10
  • Accepted : 2020.08.26
  • Published : 2020.10.12

Abstract

Graphite materials for lithium ion battery anode materials are the most commercially available due to their structural stability and low price. Recently, research efforts have been conducted on carbon coatings by improving side reactions at the edge site of carbon materials. The carbon coating process has classified into a CVD by chemical reaction, wet coating process with solvent and dry coating by mechanical impact. In this paper, the rapid crush/coating process was used to solve the problem of which only few parts of the carbon precursor (pitch) can be used and also environmental problems caused by solvent removal in the wet coating process. When the ratio of needle coke to pitch was 8 : 2 wt%, and the rapid crush/coating process was carried out, it was confirmed that the fracture surface was coated by pitch. The pitch-coated sample was treated at 2400 ℃ and 41.8% improvement in 10C/0.1C rate characteristic was observed. It is considered that the material simply manufactured through the simple crush/coating process can be used as an anode electrode material for a lithium ion battery.

흑연 소재는 높은 구조적 안정성 및 낮은 가격으로 리튬 이차전지 음극소재로 이용되고 있다. 또한, 탄소 소재의 낮은 속도 특성을 개선하려는 탄소 코팅 연구가 활발히 진행되고 있다. 탄소 코팅은 화학적 반응을 이용하는 CVD 코팅, 용매를 사용하는 습식 코팅, 기계적 충돌에 의한 건식 코팅으로 나뉜다. 본 논문에서는 습식 코팅 공정에서 사용 용매에 따라 탄소 전구체(피치)의 일부만 사용될 수 있는 문제와 용매 제거에 의한 환경 문제를 해결하고자 건식 공정인 고속 분쇄/코팅 공정을 이용하여 리튬 이차전지 음극용 탄소 소재를 제조하였다. 침상 코크스와 피치의 무게비는 8 : 2 wt.%으로 하고, 고속 분쇄/코팅 공정을 이용하여 침상 코크스의 분쇄와 피치의 코팅을 통한 구상화를 진행하였을 때, 침상 코크스의 모서리 면이 피치로 코팅되는 것을 확인하였다. 이 소재를 2400 ℃ 고온 열처리를 진행한 결과 피치 코팅되지 않은 소재와 비교하여 초기용량과 효율은 큰 차이를 보이지 않았으나, 10C/0.1C 속도 특성에서 41.8%의 성능이 향상되었다. 고속 분쇄/코팅 공정을 통해 제조된 소재는 고속 방전용 리튬 이차전지 음극 소재에 사용될 수 있을 것으로 생각된다.

Keywords

References

  1. J. G. Kim, J. H. Kim, B. J. Song, C. W. Lee, and J. S. Im, Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO), J. Ind. Eng. Chem., 36, 293-297 (2016). https://doi.org/10.1016/j.jiec.2016.02.014
  2. J. G. Kim, J. H. Kim, B. J. Song, Y. P. Jeon, C. W. Lee, Y. S. Lee, and J. S. Im, Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF, Fuel, 167, 25-30 (2016). https://doi.org/10.1016/j.fuel.2015.11.050
  3. J. Kim, G. F. Liu, C. W. Lee, Y. S. Lee, and J. S. Im, Boron-doped carbon prepared from PFO as a lithium-ion battery anode, Solid. State. Sci., 34, 38-42 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.05.005
  4. B. C. Bai, J. G. Kim, J. H. Kim, C. W. Lee, Y. S. Lee, and J. S, Im, Blending effect of pyrolyzed fuel oil and coal tar in pitch production for artificial graphite, Carbon Lett., 25(1), 78-83 (2018).
  5. Y. J. Han, D. Chung, K. Nakabayashi, J. D. Chung, J. Miyawaki, and S. H. Yoon, Effect of heat pre-treatment conditions on the electrochemical properties of mangrove wood-derived hard carbon as an effective anode material for lithium-ion batteries. Electrochim. Acta, 213, 432-438 (2016). https://doi.org/10.1016/j.electacta.2016.07.138
  6. B. H. Kim, J. H. Kim, J. G. Kim, M. J. Bae, J. S. Im, C. W. Lee, and S. Kim, Electrochemical and structural properties of lithium battery anode materials by using a molecular weight controlled pitch derived from petroleum residue, J. Ind. Eng. Chem., 41, 1-9 (2016). https://doi.org/10.1016/j.jiec.2016.07.006
  7. J. F. Peters, M. Baumann, B. Zimmermann, J. Braun, and M. Weil, The environmental impact of li-Ion batteries and the role of key parameters - A review, Renew. Sust. Energ. Rev., 67, 491-506 (2017). https://doi.org/10.1016/j.rser.2016.08.039
  8. M. Yoshio, H. Wang, and K. Fukuda, Spherical carbon-coated natural graphite as a lithium-ion battery-anode material, Angew. Chem. Int. Ed., 42(35), 4203-4206, (2003). https://doi.org/10.1002/anie.200351203
  9. Y. J. Han, J. Kim, J. S. Yeo, J. C. An, I. P. Hong, K. Nakabayashi, J. Miyawaki, J. D. Jung, and S. H. Yoon, Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch, Carbon, 94, 432-438 (2015). https://doi.org/10.1016/j.carbon.2015.07.030
  10. S. Yoon, H. Kim, and S. M. Oh, Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries, J. Power Sources, 94(1), 68-73 (2001). https://doi.org/10.1016/S0378-7753(00)00601-7
  11. Y. Y. Zhou, X. H. Li, H. J. Guo, Z. X. Wang, and Y. Yang, Study on the performance of carbon-graphite composite coated by pitch, J. Funct. Mater., 38(6), 955-957 (2007).
  12. J. H. Lee, H. Y. Lee, S. M. Oh, S. J. Lee, K. Y. Lee, and S. M. Lee, Effect of carbon coating on electrochemical performance of hard carbons as anode materials for lithium-ion batteries, J. Power Sources, 166(1), 250-254 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.078
  13. C. Wang, H. Zhao, J. Wang, J. Wang, and P. Lv, Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries, Ionics, 19(2), 221-226 (2013). https://doi.org/10.1007/s11581-012-0733-9
  14. Y. J. Jo and J. D. Lee, Electrochemical characteristics of artificial graphite anode coated with petroleum pitch treated by solvent, Korean Chem. Eng. Res., 57(1), 5-10 (2019).
  15. S. T. Taleghani, B. Marcos, K. Zaghib, and G. Lantagne, A study on the effect of porosity and particles size distribution on li-ion battery performance, J. Electrochem. Soc., 164(11), E3179-E3189 (2017). https://doi.org/10.1149/2.0211711jes
  16. F. C. Tai, C. Wei, S. H. Chang, and W. S. Chen, Raman and Xray diffraction analysis on unburned carbon powder refined from fly ash, J. Raman Spectrosc., 41(9), 933-937 (2010). https://doi.org/10.1002/jrs.2532
  17. O. Fromm, A. Heckmann, U. C. Rodehorst, J. Frerichs, D. Becker, M. Winter, and T. Placke, Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance, Carbon, 128, 147-163 (2018). https://doi.org/10.1016/j.carbon.2017.11.065
  18. H. L. Zhang, S. H. Liu, F. Li, S. Bai, C. Liu, J. Tan, and H. M. Cheng, Electrochemical performance of pyrolytic carbon-coated natural graphite spheres, Carbon, 44(11), 2212-2218 (2006). https://doi.org/10.1016/j.carbon.2006.02.037
  19. V. A. Sethuraman, L. J. Hardwick, V. Srinivasan, and R. Kostecki, Surface structural disordering in graphite upon lithium intercalation/deintercalation, J. Power Sources, 195(11), 3655-3660 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.034
  20. H. Y. Lee, J. K. Baek, S. W. Jang, S. M. Lee, S. T. Hong, K. Y. Lee, and M. H. Kim, Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries, J. Power Sources, 101(2), 206-212 (2001). https://doi.org/10.1016/S0378-7753(01)00671-1
  21. C. Wan, H. Li, M. Wu, and C. Zhao, Spherical natural graphite coated by a thick layer of carbonaceous mesophase for use as an anode material in lithium ion batteries, J. Appl. Electrochem., 39(7), 1081-1086 (2009). https://doi.org/10.1007/s10800-008-9761-6