• Title/Summary/Keyword: Coating Agent

Search Result 376, Processing Time 0.024 seconds

Study on Application of Urethane Materials for Hardening of Metal Artifacts (금속유물 강화처리를 위한 우레탄 수지의 적용성 연구)

  • Lee, Ho-Yeon;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.415-420
    • /
    • 2011
  • Urethane coating agent was made up in order to prevent corrosion on metal relics. This urethane coating agent was designed to solve problems linked to gloss and discoloration caused by existing acrylic coating agent which is mainly applied to metal relics. For the purpose, the urethane coating agent was made up which has lower gloss and slight color change. This coating agent formed thinner coating layer with excellent adhesion compared to the existing agent and has outstanding resistance to the surface oxidization of metal relics and water repellent on the surface. In addition, the agent is considered a stable coating agent replacing current acrylic coating agent with showing easy dissolution in organic solvents such as acetone, toluene and xylene with excellent result in reversible reaction.

SEM/EDS Evaluation of Gold Bonding Agent Applied on Non-precious Alloys and Cast CP-Ti (도재 소부용 비귀금속 합금과 티타늄에 적용한 Gold Bonding Agent의 전자현미경적 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • The purposed of this study was to investigate the effect of Gold bonding agent as intermediate layer between metal substrate and ceramic coating. Gold bonding agent used to seal off any surface porosity, to mask the greyish color of the metal, and to provide an underlying bright golden hue to the ceramic coverage. The adhesion between metal substrate and ceramic is related to diffusion of oxygen during ceramic firing. The oxide layer produced on non-precious alloy anti titanium was considered to have a potentially adverse effect on metal-ceramic bonding. The oxidation characteristics of titanium and non-precious alloys are the main problem. Every group were divided into test and control groups. Control groups are carried out process of degassing for product oxide layer. Au coating was applied on each Ni-Cr, Co-Cr alloys and cp-Ti specimens with difference surface condition or degassing. Specimens surfaces and cutting plane was characterized by SEM/EDS. Results suggested that Au coating is effective barriers to protect metal oxidation during ceramic firing.

  • PDF

Development of Higher Functional Coating Agents for Pulp Mold (II) -Manufacture of mixed coating agents- (펄프몰드용 새로운 고기능 코팅제 제조기술개발(제2보) -혼합코팅제 제조-)

  • 강진하;임현아
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • In recent years, numerous studies have been carried out to find out the possible substitution of PE-coated paperboards used in packaging of watery or oily foods. Accordingly, this study was carried out to obtain the basic data for producing higher functional coating agents for pulp mold by evaluating various kinds of mixed coating agents. At that time, two kinds of synthetic coating agents(AKD, PYA) and three kinds of natural coating agent(CMC, corn starch, oxidized starch) were used for making the mixed coating agents respectively. Physical properties of coated paperboards were tested. Conclusions obtained from this study were as follows. Based on concentrations, the proper mixture ratios were 10:90(AKD:CMC), 10:90(AKD:corn starch), 10:90(AKD:oxidized starch), 40:60(PVA:CMC), 20:80(PVA:corn starch) and 20:80(PYA:oxidized starch). The mixed coating agent of PYA:corn starch(20:80) was the most efficient coating agent. Consequently, water and oil resistance were improved even with much addition of natural coating agents. We consider that they can be suitable for the packaging used in the storage of higher moisture vegetables and other food, and also can be suitable for oily fried food.

An Experimental Study on the Properties of Strength for Lightweight Concrete of Coated Scoria Lightweight Aggregate (피복 화산암재를 이용한 경량콘크리트의 강도특성에 관한 실험적연구)

  • 이시우;서치호
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.61-68
    • /
    • 1990
  • This experimental study is aimed to investigate the coating method of scoria lightweight aggregate for reo duction of water absorption and the physical dynamic characteristics of coated-scoria jightweight aggregate con¬crete. The coating methods are as follows: I) Non-coating method. II) Coating method of only cement paste. rn) Coating mehtod of surface-coating agent after coating by cement paste. IV) Coating method of only surfaee-coating agent. V) Coating method of cement pasted after coating by surface-coating agent. The summerized conclusion are as fallows ; 1) Specific gravity and the rate of water absorption were lowest when aggregate was covered by only surface-coating agent, especially, rate of absorption was about 10% of non-coating aggregate. 2) Coated-aggregate were about 0.87~0.97t/m3 and lightweight concrete made of coated-aggre¬gates were 1.80~ 1.94 t/m3 in unit weight. 3) Compressive strength of the lightweight concrete made of cement pasted-coating aggregate was about 200~215kg/crrl. 4) The higher the rate of water absorption of coarse aggregate, the higher the rate of deterioration of compressive strength.

Study on Coating Agent Composition for Adhesion of Solid Propellant(I) (고체 추진제 접착용 코팅제 조성 연구(I))

  • Jeong, Jae-Yun;Kim, Kyung Min;Park, Jung-Ho;Choi, Sung-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.84-90
    • /
    • 2020
  • The adhesion strength of two konds of solid propellants(primary propellant/secondary propellant) was studied by coating agent of adhesion composition composed of organic solvent, curing agent, and cure catalyst. The coating agent using FeAA, cure catalyst, resulted propellant breaking at more 0.14 wt% and interface breaking at less 0.10 wt%. The TPB cure catalyst of confirmed the result of the interface breaking immediately after curing of the secondary propellant. In addition, the coating agent using TPB was found to increase the adhesion strength between the primary propellant and the secondary propellant over time.

Studies on the Storage of Processed Fruits by Coating Agent Treatment (피막제(皮膜劑) 처리에 의한 과실(果實) 가공품(加工品)의 저장(貯藏)에 관한 연구)

  • Yoon, Jung Eui;Lee, Sang Gun;Hur, Yun Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.2
    • /
    • pp.93-98
    • /
    • 1983
  • Apple sugaring and apple nectar gel were treated with coating agent, and then the rate of weight loss, browning reaction and fungi growth on the storage conditions of those were investigated. The results obtained were summarized as follows; The composition of sucrose, D-sorbitol, corn syrup, gelatin, arabia gum, citric acid, sodium citrate and sodium ascorbate as a nontoxic coating agent was desirable to repress weight loss browning reaction and fungi growth of apple sugaring and apple nectar gel. It was the most effective method that apple sugaring was treated with the coating agent and refrigerated with double packaging. The contraction by weight loss, browning reaction and fungi growth of apple nectar gel treated with the coating agent and freezed with double packaging were repressed.

  • PDF

Evaluation of physical properties of Zn-Al metal coating according to arc metal spray surface treatment method (아크 금속 용사 표면 처리 방법에 따른 Zn-Al 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.89-90
    • /
    • 2022
  • Arc metal spraying is a widely used method for improving the performance of construction structures such as corrosion resistance and electromagnetic wave shielding. However, when arc metal spraying is applied to a concrete structure, adhesion performance may deteriorate. Therefore, the effect of each surface treatment method on the physical properties between the arc metal spray coating and concrete was reviewed by evaluating the deposition efficiency and adhesion performance according to the arc metal spray surface treatment method (surface reinforcing agent, roughening agent, and sealing agent). As a result, it is suggested as an optimal surface treatment condition to induce non-interface failure by using a roughening agent and to improve the properties of concrete and metal coatings by applying a surface reinforcing agent and sealing agent.

  • PDF

Development of Cellulosic Woven Fabric for Digital Textile Printing (전처리약제에 따른 셀룰로오스 디지털텍스타일 프린팅소재의 개발에 관한 연구)

  • Son Eun Jong;Lee Young Mok;Jang Se Chan;Yi Sung Chul
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.20-26
    • /
    • 2005
  • For developing digital printing textiles, special pretreatment processes are necessary. These processes include developing formulation of coating agent and coating processes. The pretreatment were investigated with the variation concentration of anti-migration agent, fixation chemical etc.. The printing qualities according to pretreatment conditions were studied with color yield, printed capital letter sharpness and washing fastness. It was observed that the concentration of anti-migration agent, fixation agent(alkali) was closely related to printing qualities. For developing industrial technology of cellulosic digital printing textiles, optimum viscosity of pretreatment coating formulation is very important factor.

Durability and Bioassay of a Sulfur Polymer Surface Protecting Agent for Concrete Structures (콘크리트 구조물용 유황폴리머 표면보호재의 내구성능 및 생물독성)

  • Seok, Byoung-Yoon;Lee, Byung-Jae;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.29-36
    • /
    • 2015
  • In this study, to examine the use of sulfur polymer as a coating agent for concrete, durability and hazard evaluations were performed. The result of the evaluation indicated that the chemical resistance of the coating agent for concrete was outstanding against acidic, base, and alkaline solutions. The evaluation of the bond strength after an accelerated weathering test depending on the mixing condition indicated that the most outstanding strength characteristic was obtained when silica powder and fly ash were mixed at the same time. The bond strength exceeded 1 MPa in every mixing condition even after the repeated hot and cold treatment of the coating agent specimen for concrete, and the SFS mix proportion showed the highest bond strength. The examination of the accelerated carbonation and chloride ion penetration resistance of the concrete coated with the coating agent indicated that the specimen coated with the coating agent using silica powder as a filler showed the most outstanding durability. When a fish toxicity test was performed to examine the hazard of the use of the functional polymer as a coating agent for concrete, the functional polymer was found to have no effect on the organisms. When the chemical resistance, freezing and thawing resistance, carbonation, and chloride ion penetration resistance of the coating agent were considered, substituting silica powder and fly ash as the fillers of the functional polymer by 20%, respectively, was the optimal level in the range of this study.

Enhanced adhesion properties of conductive super-hydrophobic surfaces by using zirco-aluminate coupling agent

  • Park, Myung-Hyun;Ha, Ji-Hwan;Song, Hyeonjun;Bae, Joonwon;Park, Sung-Hoon
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.387-392
    • /
    • 2018
  • Various technical approaches and concepts have been proposed to develop conductive super-hydrophobic (SH) surfaces. However, most of these approaches are not usable in practical applications because of insufficient adhesion and cost issues. Additionally, durability and uniformity issues are still in need of improvement. The goal of this research is to produce a large-area conductive SH surface with improved adhesion performance and uniformity. To this end, carbon nanotubes (CNT) with a high aspect ratio and elastomeric polymer were utilized as a conductive filler and matrix, respectively, to form a coating layer. Additionally, nanoscale silica particles were utilized for stable implementation of the conductive SH surface. To improve the adhesion properties between the SH coating layer and substrate, pretreatment of the substrate was conducted by utilizing both wet and dry etching processes to create specific organic functional groups on the substrate. Following pretreatment of the surface, a zirco-aluminate coupling agent was utilized to enhance adhesion properties between the substrate and the SH coating layer. Raman spectroscopy revealed that adhesion was greatly improved by the formation of a chemical bond between the substrate and the SH coating layer at an optimal coupling agent concentration. The developed conductive SH coating attained a high electromagnetic interference (EMI) shielding effectiveness, which is advantageous in self-cleaning EMI shielding applications.