• Title/Summary/Keyword: Coastal erosion control structure

Search Result 7, Processing Time 0.019 seconds

An Experimental Study on the Effect of Erosion Control by Multi-Cylinder Piles (다원주 군파일의 침식방지효과에 관한 실험적 연구)

  • Lee, Sang-Hwa;Jang, Eun-Cheul;Lee, Han-Seung;Jeong, Seok-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • Environmental and safety problems are one of the most important factors in designing coastal wave control structures and maintaining facilities in coastal zone. This study suggests the multi-cylinder piles as a profitable structure for preserving coastal zone as well as controlling the wave effectively. The hydraulic model experiment was performed to investigate the effect of erosion control of the structure. The experimental study was carried out to research the effect of erosion control in the coastal zone for existing a concrete wave breaker and the structure with multi-cylinder piles placing at the same location. As a result multi-cylinder piles reduced erosion at each sides of structure and occured sedimetation at front of structure.

Shoreline Changes Caused by the Construction of Coastal Erosion Control Structure at the Youngrang Coast in Sockcho, East Korea (속초 영랑해안 해빈침식대책 인공구조물 건설에 기인하는 해안선 변화)

  • Kang, Yoon-Koo;Park, Hyo-Bong;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.296-304
    • /
    • 2010
  • The shoreline change caused by the construction of shore protection structures are discussed based on the example of Youngrang coast, Sokcho where the coastal erosion control system(CECS), three artificial headlands and two submerged breakwaters are being constructed. The study qualitatively analyzed the shoreline changes of Youngrang coast using available satellite/aerial photographs and camera photographs taken during the construction period of 6 years since 2002 for the artificial headlands construction. The main results from the study are as following. (1) Before the installation of the middle artificial headland, longshore drifts along Youngrang coast are transported in the NW-SE direction according to the seasonally different wave characteristics. (2) During the CECS construction the shoreline is continuously changed by altering the local longshore drift budget. Especially, the middle artificial headland induces considerable change of shoreline by blocking the sediment supply from the southern pocket beach to the northern pocket beach and by accelerating the sediment accretion at the wave shadow zone behind its head. It induces the asymmetry on the net longshore drift causing the significant erosion at the center of the southern pocket beach. (3) The study demonstrates that serious unintended erosion/accretion problem are possibly occurred due to local changes on the wave transformation and the sediment transport by the construction of coastal erosion control system.

A Study on the Concentration of Wave Energy by Construction of a Submerged Coastal Structure (해저구조물 설치에 따른 파랑에너지 집적에 관한 연구)

  • Gug, S.G.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.6 no.1
    • /
    • pp.69-91
    • /
    • 1992
  • A new type of horizontal submerged break water or fixed structure to control waves near coastal area is introduced to focus wave energy before or behind it. Intentionally, the water depth near the structure is changed gradually to get a refraction and diffraction effect. The concentration of wave energy due to the structure was analyzed for the selected design of structure. The shape of the submerged structure in consideration is a circular combined with elliptical curve not to cause reflection of waves at the extreme edge of the structure but cause wave scattering. The direction of the structure against the incident wave is changed easily in the model Applying a regular wave train the following were examined. 1) whether a crescent plain submerged structure designed by the wave refraction theory can concentrate wave energy at a focal zone behind and before it without wave breaking phenomenon. 2) Location of maximum wave amplification factor in terms of the incident wave direction, wave period, etc. In any event the study would contribute to control waves near coastal area and to protect a beach from erosion without interruption of ocean view it is an useful study for the concentration of wave energy efficiently with the increase of wave height.

  • PDF

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.

Analysis of Flow Around Multi-Circular Cylinders Using a Numerical Model (수치모형을 이용한 다원주 주위의 유동 해석)

  • Lee Sang-Hwa;Park Jung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.29-35
    • /
    • 2006
  • The flow patterns around multi-circular cylinders are studies, in order to obtain a global view on the structure of wave control and circulation of sea flow in coastal region. The flow force depends upon the vortex shedding exerted on the structure, especially how the vortex shedding affects the erosion when the structure sets on the sand bottom. Therefore, it is necessary that the flow pattern be hocked. In order to simulate the flow around multi-circular cylinders, the CFX and FLUENT of the computational fluid dynamics (CFD) program were used and compared with the experimental results of the flow visualization installation. The phenomena of flow around the multi-cylinders will be applied to fundamental data for predicting the flow force acting against the structure, erosion and sedimentation around cylinders in arrangement.

Basic Research on Revetments Development of Erosion Protection for Coastline Creation of Hydrophilic Environment by Field Observation (현장관측에 의한 친환경 해안조성을 위한 침식방지 호안공 개발에 관한 기초적 연구)

  • Lee, Jong-Seok;Han, Jae-Myung
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.983-993
    • /
    • 2008
  • In recent times, sea level increasing caused by abnormal weather and global warming, sea-sand dredging and complex development causes various kind of erosion damages onto the coastal area in the world. The various types of erosion control and protection methods are applied but there are no signs of fruitful effectiveness. The PC concrete protection block for shore protection structure is practically installed in globally but most of structures in the present day became villainous because of bad accessability. In this study, hydrophilic revetments for control and protection of coastline erosion will be developed in order to make up for a faculty of the shore erosion protection block with better accessibility and excellent protection ability. Experimental measurements were researched to insure for the capacity and facility on reflection coefficient, overtopping volume, and overtopping height characteristics of newly developed shore erosion protection block in model tests. As the result, hydraulic model tests show much excellent than the general step block. Field tests were carried out also to verify through vegetative test on an affinity and construction work test of control-protection on coastline erosion with actual utilization. In the latter case, deposition of sand accumulation occurred in fairly short time at the established reaches and then we can be confirmed to utilize for newly developed block as the revetments for control and protection of coastline erosion.

Effects of Geological Conditions on the Geomorphological Development of the Southwestern Coastal Regions of Korea (서남해안지역(西南海岸地域)의 지형발달(地形發達)에 미친 지질조건(地質條件))

  • Kim, Suh Woon
    • Economic and Environmental Geology
    • /
    • v.4 no.1
    • /
    • pp.11-18
    • /
    • 1971
  • The geotectonics and geomorphic structure of Korea resulted from the Song-rim Disturbance and the Daebo orogenic movements. Afterward this mountainous peninsula underwent several geological changes on a small scale, and it was also claimed that the steady rising of the elevated peneplain of the eastern coast and the submerging of the southwestern coastal area are largely due to the tilted block movement. These views have been generally accepted good in several ways, but they are limited in range or lacking in theoretical integration. The present writer investigated the geology of the Mt. Chi-ri-san and the Honam coal mining area for a geological map in 1965, respectively. The results of these studies convinced the present writer that the conventional views, which were based upon a theory of lateral pressure should be reconsidered in many respects, and more recent studies made it clear that the morphological development in the southwestern area can be better explained by the orogenic movement and rock control. The measurement of submerging speed of the western coastal area (Pak. Y. A., 1969) and a new account on the geology and tectonics of the Mid-central region of South Korea (Kim O.J., 1970) act as an encouragement to a new explanation. The present writer's researches on the extreme southwestern portion of the peninsula show that the steady submerging of this area cannot be attributed to a simple downthrown block phenomenon caused by block movement. It is no more than the result of the differential movement of uplifting in the eastern and western coastal areas and the rising of sea-level in the post-glacial period. This phenomenon could be easily explained by the comparison of the rate of rise in sea-level and amount of heat flow between Korea and other areas in the world. The existance of the erosional planes in the Sobaik-San ranges also provide an evidence of an upheaval in the western coast area. Though the Sobaik-San ranges largely follow the direction of the Sinian system. They consist of the numerous branches, whose trends run more or less differently from their main trend because of the disharmonic folding, are converged into Mt. Sobaik-San and Chupungryung. The undulation of the land is not wholely caused by orogenic movements, where as the present writer confirmed that the diversity of morphological development is the direct reflection of geological conditions such as rocks and processes which constitute the basic elements of geomorphic structure. An east-west directed mountain range which could be named as Hansan mountain range, was claimed to be oriented by the joint control. The geological conditions such as a special erosion and weathering of agglomerate and breccia tuff usually produce pot-hole like submarine features which cause the whirling phenomenon at the southwestern coast channel.

  • PDF