• Title/Summary/Keyword: Coastal Structure

Search Result 995, Processing Time 0.028 seconds

Centrifuge Model Test and Numerical Analysis on Coastal Structure (안벽구조물에 대한 Centrifuge 모형실험과 수치해석)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Jeon, Sang-Hyun
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.65-72
    • /
    • 2009
  • In this paper centrifuge model tests and numerical analysis on the coastal structure on the marine deposits of sand were performed to investigate the behavior of structure and foundation under the condition of wave action in field. In centrifuge model experiments, construction sequence of coastal structure such as preparation of sand deposit, excavation replacement, rubble mound with crushed stones and installment of coastal structure was reconstructed and the behavior of ground settlement during stage of construction was observed during tests. For the final stage of simulating the horizontal movement of coastal structure due to wave force, horizontal load was applied by horizontal loading apparatus being specially designed so that horizontal displacement of structure could be observed. Numerical analysis were also carried out and its results were compared with test results to assess the property of centrifuge mode experiments with respect to the behavior of structure as well as ground.

  • PDF

A Study on Behaviour Characteristics Analysis and Materials Design Strength Decision of the Coastal Structures under Sea Wave Loads (파랑하중을 받는 해안구조물의 거동특성 분석 및 재료 설계강도 산정에 관한 연구)

  • Chung, Jeeseung;Moon, Ingi;Yoo, Chanho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.57-66
    • /
    • 2013
  • Coastal structures are functioning in complex natural phenomena such as wave, tide, seawater penetration and abrasion. So the behavior of the coastal structures material is important, because coastal structure material is directly linked to stability of the coastal structures. For this reason, to determine the behaviour characteristics, material design standard is required on the coastal structure under sea wave load. Especially, identification on the behavior of the coastal structure has not been investigated yet properly considering interaction structure and sea wave load. In this study, to identify the behaviour characteristics of the coastal structure caused by waves, the behavior of the coastal structure depending on the magnitude of the wave loads was intensively analyzed.

Wave Overtopping Characteristics of Rubble Mound Revetment and Wave Absorbing Revetment (사석 경사제 및 소파블록 경사제 호안의 월파특성)

  • Lee, Won;Park, Jin-Ho;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.443-445
    • /
    • 2008
  • Determination of allowable overtopping rate for coastal structure is a key point to determine the application of background of coastal structure while considering safety and economic efficiency. Thus, the accurate estimation of overtopping rate against coastal structure is essential. In general, estimation of overtopping against the coastal structure is based on an empirical formula or hydraulic experiment. In this study, we investigate the behavior of overtopping for rubble mound coastal structure with rubble armor stone and wave dissipating block using hydraulics experiment, and domestic or foreign design standard.

  • PDF

An Application of CADMAS-SURF to the Wave run-up in Permeable Coastal Structures (투과성 해안구조물의 Wave Run-up에 대한 CADMAS-SURF의 적용)

  • YOON HAN-SAM;CHA JONG-HO;KANG YOON-KOO
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.49-55
    • /
    • 2005
  • We constructed and demonstrated a numerical CADMAS-SURF(V4.0) model that reproduces the wave run-up characteristics on the slope of coastal structures and applied it to a permeable coastal structure. We also compared the numerical model with published experimental results on the hydrodynamic phenomena of structures and some numerical results for a modified Pbreak model. In conclusion, the CADMAS-SURF model efficiently simulated wave run-up on the slope of a permeable coastal structure. The inflow/outflow effects from the porous structure boundary were approximately $15\%$ more than with the modified Pbreak model. Nevertheless, the descriptions of the internal hydraulic characteristics still could not be full!! exacted from the result(Fig. 1 참조)s obtained in our model experiment.

A study on the wave control function of ecosystem control structures (생태계제어 구조물의 파랑제어 효과에 관한 연구)

  • 김현주;류청로;손원식
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.149-159
    • /
    • 1996
  • Multipurpose development of the coast and ocean can be considered as multifunction construction combining the functions of coastal protection, waterfront amenity and creation or rehabilitation of habitats. Multfunction development of coastal and ocean spaces can be accomplished by applying the ecosystem control structure of artificial habitats which will cultivate fishing ground with ecological harmony to the coastal protection system. To evaluate the applicability of ecosystem control structures as as fundamental coastal protection structure, wave control function of the structure is studied by numerical and physical analyses. Dimensional analysis and hydraulic experiment point out the importance of width and crest depth of ecosystem control structure, construction water depth and wave steepness. Wave control efficiency is estimated by the attenuation coefficient $(K_H)$ according to wave steepness $(H_0/L_0)$, relative constructed water depth $(h_i/H_0)$, relative berm width $(B/L_0)$ and relative crest depth $(h_B/H_0)$ of eosystem control structure. Empirical fomulas are suggested based on the results of model test by applying the multiple model based on this experimental results and numerical wave shoaling-dissipation-breaking model appears to be valid for the analysis of wave transformation around ecosystem control structure in the coastal waters.

  • PDF

Study on Modeling Procedure of Hydraulic Experiment of Coastal Structure Scour at Sea-Bed Using Fluid-structure Interaction (유체-구조 상호작용을 고려한 해안구조물의 해저면 세굴에 대한 조파실험 해석 기법 연구)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.49-53
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

The design load factor of road structure considering long-term coastal geographic change (해안지형의 장기적 변화에 따른 도로 구조물 설계하중 고려 요소에 관한 연구)

  • Bae, Sun-Hak;Kang, Sang Hyeok
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.75-83
    • /
    • 2013
  • Human-induced modifications in coastal area may cause strong geomorphic responses by disturbing sediment supply, transport and deposition regimes. Morever, engineering structure have been built to stabilize coastal change, these effort impact on other morphologic change. In case of coastal area, there are lack of sediment yield data. This study focus on the tendency of long-term shoreline change, estimate method od sediment discharge which is a major factor of coastal change and adduced to way for considering design load influenced to coastal road.

Analytical Performance Comparison of Scour Protection of Rubble Mound Structure Shape using Simulation (해석적 모의조파실험을 이용한 해안사석구조물 형상에 따른 해저면 세굴 방지 성능 비교)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.117-122
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

The sediment runoff and geographic change around coastal structure using Korean modern map (근세 지도를 이용한 토사유출 및 항만구조물 주변의 지형변화 분석)

  • BAE, Sun-Hak;KANG, Sang Hyeok
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.135-142
    • /
    • 2012
  • The map drawn on a scale of 1 to 50,000, modern Korea map drawn on a scale of 1 to 50,000 made by Japanese colonial era in 1910s, is the first topographical map using modern technical method. The map has been mainly used in human activities and geographic viewpoint, recently it is available on various field with recognizing high accuracy. It is especially expected that the map will provide us with lots of information on long-term change of topography in field of coastal area which is built on coastal structure. This study presents a method for analyzing before and after geographic change of coastal structure in independent drift sand system. The reference point to analyze long-term coastal geographic change was selected the map of 1910s.

Application of Importance Sampling to Reliability Analysis of Caisson Quay Wall (케이슨식 안벽의 신뢰성해석을 위한 중요도추출법의 적용)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.405-409
    • /
    • 2009
  • Reliability analysis of coastal structure using importance sampling was shown. When Monte Carlo simulation is used to evaluate overturng failure probability of coastal structure, very low failure probability leads to drastic increase in simulation time. However, importance sampling which uses randomly chosen design candidates around the failure surface makes it possible to analyze very low failure probability efficiently. In the numerical example, failure probability of caisson type quay wall was analyzed by using importance sampling and performance according to the level of failure probability was shown.