• Title/Summary/Keyword: Coastal SST

Search Result 154, Processing Time 0.023 seconds

Estimation of Maximum Typhoon Intensity Considering Climate Change Scenarios and Simulation of Corresponding Storm Surge (기후변화 시나리오에 따른 최대 가능 태풍강도 추정 및 이에 따른 폭풍해일고 양상 모의)

  • Yoon, Jong-Joo;Jun, Ki-Cheon;Shim, Jae-Seol;Park, Kwang-Soon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.292-301
    • /
    • 2012
  • The rise in sea surface temperature (SST) as a global warming enhance overall typhoon activity. We assumed that there exist thermodynamic limits to intensity that apply in the absence of significant interaction between storms and their environment. The limit calculations depend on SST and atmospheric profiles of temperature and moisture. This approach do appear to provide resonable upper bounds on the intensities of observed storms and may even be useful for predicting the change in intensity over a long period time. The maximum storm intensities was estimated through the global warming scenarios from IPCC-AR4 report over the North-East Asia. The result shows stronger intensities according to scenarios for increase of carbon dioxide levels. And storm surge simulations was performed with the typhoons which were combined route of the typhoon Maemi (2003) and intensity as climate change scenarios. The maximum increase of storm surge heights was shown about 29~110 cm (36~65%) regionally. Especially at Masan, the result of simulated maximum surge height exceed the 200 years return period surge.

Characteristics of Ocean Environment Before and After Coastal Upwelling in the Southeastern Part of Korean Peninsula Using an In-situ and Multi-Satellite Data (다중위성 및 현장관측을 이용한 동해남부 연안용승 발생 전후의 해양환경 특성)

  • Kim, Sang-Woo;Go, Woo-Jin;Kim, Seong-Soo;Jeong, Hee-Dong;Yamada, Keiko
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.345-352
    • /
    • 2010
  • The objective of this paper is to explore the short-term variability of water temperature and chlorophyll a (Chl-a) derived from in-situ and satellite data (NOAA, Sea WiFS and QuikScat) in the upwelling region of the southeastern part of Korean Peninsula in June and August, 2007. Particularly we focused on the spatial variability of sea surface temperature(SST) and Chl-a in the East Korean Warm Current region. In the results of the in-situ data, the peaks of Chl-a in june was shown at a depth of 50m The peaks of Chl-a in August was shown at a depth of 10m at the stations 4 and 5 near the land, and a depth of 30m at the other stations. The Chl-a concentrations in August were also lower than those in june except for station 5. As a result, the peaks of Chl-a in August occurred at a depth of 20~40 m shallower than those of Chl-a in june. This indicates that the nutrient-rich water within the mixed layer depth may be immediately supplied by the coastal upwelling, which is due to the southerly component of wind. The relationship between SST and Chl-a showed a negative correlation, and the high concentration of Chl-a occurred in the cold water area. The southerly wind and the East Korean Warm Current influenced a remarkable offshore movement of the cold water and Chl-a near the coastal area.

Study on the Southern Coastal Waters of Korea by NOAA Image (NOAA영상자료에 의한 한국 남해안연안수 조사연구)

  • 김복기
    • Korean Journal of Remote Sensing
    • /
    • v.5 no.1
    • /
    • pp.57-67
    • /
    • 1989
  • This study on the southern coastal waters of Korea has been made by analysis of NOAA image and oceanographic observation data from October 1987 to August 1988. The results obtained from the study are as follow: Horizontal distributions of water temperature in different layers in winter ranged from 6.07 to 18.62$^{\circ}C$ at 0m layer, 6.02 to 18.54$^{\circ}C$ at 30m layer and 7.19 to 18.69$^{\circ}C$ at 50m layer. Consequently its vertical distribution showed homogeneity. Horizontal water temperature gradients were 0.28$^{\circ}C$/mile between the coastal waters and Tsushima warm waters. In summer, its horizontal distribution varied from 19.37 to 29.92$^{\circ}C$ at 0m layer, 13.26 to 27.11$^{\circ}C$ at 30m layer and 7.36 to 26.6$0^{\circ}C$ at 50m layer, and its vertical profile showed stratified structure. Vertical water temperature gradients were 0.44$^{\circ}C$/m between 30 and 50m layers. It was remarkable that distribution of southern coastal water system analysed by NOAA image coincided with relatively the oceanographic observation data but SST from NOAA image seemed to be 2-4$^{\circ}C$ lower in winter and 4-6$^{\circ}C$ lower in summer than the oceanographic data.

TEMPORAL AND SPA TIAL VARIATION OF NIGHTTIME FISHING GROUND DERIVED FROM SATELLITE IMAGERY

  • Kim Sang-Woo;Jeong Hee-Dong;Suh Young-Sang;Go Woo Jin;Jang Lee-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.437-440
    • /
    • 2005
  • We examined the relationship between the 50m temperature estimated by remote sensing sea surface temperature (SST) and fishing ground (squid fishing ground) detected by nighttime visible channel defense meteorological satellite program (DMSP) I operational linescan system (OLS) images in the East/Japan Sea during 1993-2000. The results are as follows: The numbers of nighttime fishing boat were distributed the highest in October, and the lowest in April during this study. A nighttime fishing grounds have concentrated in the East Korea Warm Current region, coastal regions of Honshu Island, and Polar front region. Fishing grounds have distributed $11-18^{\circ}C$ of estimated 50m temperature from the satellite data. Relationship between estimated 50m temperature and the distributed fisheries boats showed that the north boundaries of fishing grounds have distributed the temperature of below $12^{\circ}C$ from 1996 to 2000 and that of $13-15^{\circ}C$ during 1993-1995 and 1997-1999. Stable fishing grounds appeared near the Korea/Tsushima Strait from January to March. The center of fishing grounds in spring (April-Jun) have moved to the northward than that in winter, and variations appeared largely in winter. In summer (July-September), center of fishing grounds have formed near the Uleung Island in the south east coast of Korea, and in autumn maximum fishing ground appeared in October, the fishing ground southward from November.

  • PDF

Surface Heat Flux and Oceanic Heat Advection in Sendai Bay

  • Yang Chan-Su;Hanawa Kimio
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.11-24
    • /
    • 2006
  • Coastal sea surface temperature (CSST) and meteorological data from January through December 1995 are used to estimate the net surface heat flux and heat content for Sendai Bay. The average annual surface heat flux in the area north of the bay is estimated to be $+35Wm^{-2}$, whereas the southwestern area is estimated to be $+56Wm^{-2}$. Therefore, the net surface heat flux shows a net gain of heat over the whole bay. The largest heat gain occurs near Matsukawaura, where the strong Kuroshio/Oyashio interaction produces anomalously cold SST and wind is more moderate than in other regions of Sendai Bay over most of the year. The lowest heat gain occurs around Tashiro Island, where the temperature difference between air and sea surface is lower and wind is stronger. The heat budget shows that both surface forcing and horizontal advection are potentially important contributors to the seasonal evolution of CSST in the bay. From the A VHRR and SeaWiFS data, it is found that offshore conditions between the bay and Eno Island are different due to the presence of the Ojika Peninsula. It is also shown that the temporal behaviors of SSTs in the bay are closely connected with the air-sea heat flux and offshore conditions.

Marine Pollution of the East China Sea by Floating Marine Debris(I) - Temporal quantity distribution of each zone - (부유성 해양 폐기물에 의한 동지나해의 해양오염(I) - 해역별 수량 분포를 중심으로 -)

  • Kim, Jong-Hwa;Kim, Yong-Bok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.4
    • /
    • pp.642-647
    • /
    • 2011
  • In order to analyze the influence of floating marine debris (FMD) in the East China Sea (ECS), a sighting survey was conducted from July 1st to July 14th, 2009 navigating about 966 km using a training vessel "Kaya (1,737 ton)" of Pukyong National University. The sampled zones are divided into 5 transect by observation day during the survey days and again specified with 45 segments per unit hour on the survey routes. The results of distribution of FMD are as follows: 1. The quantities of FMD at the central China Sea(CE) and northern part of Taiwan(NT) were found as total mean of 90.8 ea/hr, 56.7 ea/hr, respectively, and also 36.8 ea/hr, western part of Kyushu district(WJ), 10.7 ea/hr, 8.0 ea/hr, western(OK1) and northern part(OK2) of Okinawa, respectively. 2. Temporal variation of FMD is represented by depicting the sinusoidal curve as shape as tide in CE and OK1. 3. The higher sea surface temperature (SST) is as likely as if Kuroshio current exists strongly, the less quantities are decreased. On the other hand, the coastal zone of ECS and near of Yellow Sea are increased by lower SST.

Analysis of Ocean Color Data for Observation on the Ocean Environment Change Caused by Typhoon Path (태풍의 이동경로에 따른 해양환경변화관측을 위한 해색 자료 분석)

  • Jeong, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • When the typhoons are passing over the ocean, the ocean environment has both physical and biological impacts on the East, South sea and Yellow sea of Korea. As a result of typhoon path, vertical mixing and upwelling injured colder subsurface water, and leaded to phytoplankton blooming along the typhoons. The ocean environment before and after a typhoon played an important role in the biological effect of sea surface. Although the magnitude of sea surface temperature (SST) gets cooler because of typhoon path, other physical and biophysical responses are quite different such as chlorophyll, K490 and SST. The purpose of this study is to compare with the typhoon path that influenced the Korean Peninsula and ocean environment parameters which were observed by ocean color remotely-sensed data. The MODIS data were used to assess the parameters of ocean environments such as K490 and chlorophyll data from 2002 to 2005. Mean chlorophyll from MODIS data increased by about 1-4% in the East sea after the typhoon. Mean concentration of MODIS chlorophyll in the post-typhoon period increased along the typhoon passage. However, Jeju coastal area has different patterns from those of the East sea.

Study on the Correlation Between the Upwelling Cold Waters and Cochlodinium polykrikoides Red Tide in the Southeast Sea of Korea (한국 남동해역의 냉수대 발생 변화와 Cochlodinium polykrikoides 적조와의 상관성 연구)

  • Kim, Bum-Kyu;Hwang, Do-Hyun;Bak, Su-Ho;Kim, Heung-Min;Unuzaya, Enkhjargal;Kim, Dae-Hyun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.559-572
    • /
    • 2019
  • In the southeast sea of Korea, the cold water is concentrated in every summer, showing in abnormal oceanic conditions. Cold water occurred in the southeast sea is dominantly influenced by wind, which occurs when the south wind is continuously blowing for 3 to 7 days more. In this study, water temperature, wind speed and direction data of KMA, KHOA and KHNP, Chlorophyll-a of COMS/GOCI, GHRSST Level 4 SST of NASA, and red tide alert data of the National Institute of Fisheries Science were used to analyze the correlation between occurrence and change of the cold water and the red tide of Cochlodinium polykrikoides. The upwelling cold water mass showed a characteristic of moving northward along the current and occurrence a high concentration of chlorophyll along the water mass. Also, when the warm current were strong, the characteristic of red tide showed a northward moving.

The influence of sea surface temperature for vertical extreme wind shear change and its relation to the atmospheric stability at coastal area

  • Geonhwa Ryu;Young-Gon Kim;Dongjin Kim;Sang-Man Kim;Min Je Kim;Wonbae Jeon;Chae-Joo Moon
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.201-213
    • /
    • 2023
  • In this study, the effect of sea surface temperature (SST) on the distribution of vertical wind speed in the atmospheric boundary layer of coastal areas was analyzed. In general, coastal areas are known to be more susceptible to various meteorological factors than inland areas due to interannual changes in sea surface temperature. Therefore, the purpose of this study is to analyze the relationship between sea surface temperature (ERA5) and wind resource data based on the meteorological mast of Høvsøre, the test bed area of the onshore wind farm in the coastal area of Denmark. In addition, the possibility of coastal disasters caused by abnormal vertical wind shear due to changes in sea surface temperature was also analyzed. According to the analysis of the correlation between the wind resource data at met mast and the sea surface temperature by ERA5, the wind speed from the sea and the vertical wind shear are stronger than from the inland, and are vulnerable to seasonal sea surface temperature fluctuations. In particular, the abnormal vertical wind shear, in which only the lower wind speed was strengthened and appeared in the form of a nose, mainly appeared in winter when the atmosphere was near-neutral or stable, and all occurred when the wind blows from the sea. This phenomenon usually occurred when there was a sudden change in sea surface temperature within a short period of time.

A Study on the Diluted Water from the Yangtze River in the East China Sea using Satellite Data (위성 자료를 이용한 제주도 주변해역에 나타나는 중국대륙기원 양자강 유출수(저염수)에 관한 연구)

  • Yoon, Hong-Joo;Cho, Han-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.33-43
    • /
    • 2005
  • China Coastal Waters(CCW) usually appeared from June through October every years, and it appeared very strong in August. In the harmonic analysis for Sea level anomaly (SLA), the annual amplitude of the eastern part (8~9.5cm) in Jeju Island was lower than those of the western part (over 13cm). In the harmonic analysis for Sea Surface Temperature (SST), the annual amplitude of the eastern part($7{\sim}8.5^{\circ}C$) in Jeju Island was lower than those of the western part($5.5{\sim}6^{\circ}C$). For the Power Spectrum Density (PSD), SLA and SST remarkablely peaked on the annual period, semi-annual period and 3-monthly period. In summer and autumn, SLA of 1996 to 1999 was high in comparison to other years, and then it should be considered that the appearance of CCW was closely related to heavy rainfalls. The path of CCW formed this boundary of temperature between the yellow sea and the east china sea.

  • PDF