• Title/Summary/Keyword: Coastal SST

Search Result 153, Processing Time 0.018 seconds

Warming Trend of Coastal Waters of Korea during Recent 60 Years (1936-1995)

  • Kang Yong Q.
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.3_4
    • /
    • pp.173-179
    • /
    • 2000
  • Recent changes in the coastal sea surface temperatures (SST) in Korea are studied by time series analysis of daily SST data during the last 60 years (1936-1995) at 18 coastal observation stations of the National Fisheries Research and Development Institute. The climate of coastal SST in Korea are rapidly changing in recent years. General trends of coast SST changes in Korea are as follows. The annual averages of SST are increasing. The annual ranges of SST variation are decreasing. The winter SST are increasing while the summer SST have a decreasing tendency. Climatic changes in coastal SST in recent 30 years (1965-1995) are more pronounced than those in the last 60 years (1936-1995). The observed trend of coast SST implies that the climate in Korea shows a tendency to shift from temperate zone to subtropical zone.

  • PDF

Fluctuations of Coastal Water Temperatures Along Korean and Japanese Coasts in the East Sea

  • KANG Yong-Q.;CHOI Seong-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.351-360
    • /
    • 1988
  • Based on historic data of monthly means of sea surface temperatures (SST) for 24 years $(1921\~1944) $ at 23 Korean and Japanese coastal stations in the East Sea (the Japan Sea), we analyzed spatio-temporal characteristics of coastal SST and SST anomalies. The means of SST at Korean coast are higher than those at Japanese coast of the same latitudes, and the annual range of SST at Korean coast are larger than those at Japanese coast. Empirical orthogonal function analysis shows that almost all $(96\%)$ of the SST fluctuations are described by simultaneous seasonal variations. The flurtuations of SST anomalies are small in the Korea Strait and large at the boundaries between the warm and told currents in the basin. The fluctuations of SST anomalies along Korean coast are correlated each other The same is true for SST anomalies along Japanese coast. However, there is only weak correlation between the SST anomalies at Korean coast and those at Japanese coast. Empirical orthogonal function analysis shows that $27\%$ of the coastal SST anomalies in the East Sea are described by simultaneous fluctuations, and $12\%$ of them are described by alternating fluctuations between Korean and Japanese coasts.

  • PDF

Temporal and Spatial Variations of Marine Meteorological Elements and Characteristics of Sea Fog Occurrence in Korean Coastal Waters during 2013-2017 (2013~2017년 연안해역별 해양기상요소의 시·공간 변화 및 해무발생시 특성 분석)

  • Park, So-Hee;Song, Sang-Keun;Park, Hyeong-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.257-272
    • /
    • 2020
  • This study investigates the temporal and spatial variations of marine meterological elements (air temperature (Temp), Sea Surface Temperature (SST), and Significant Wave Height (SWH)) in seven coastal waters of South Korea, using hourly data observed at marine meteorological buoys (10 sites), Automatic Weather System on lighthouse (lighthouse AWS) (9 sites), and AWS (20 sites) during 2013-2017. We also compared the characteristics of Temp, SST, and air-sea temperature difference (Temp-SST) between sea fog and non-sea-fog events. In general, annual mean values of Temp and SST in most of the coastal waters were highest (especially in the southern part of Jeju Island) in 2016, due to heat waves, and lowest (especially in the middle of the West Sea) in 2013 or 2014. The SWH did not vary significantly by year. Wind patterns varied according to coastal waters, but their yearly variations for each coastal water were similar. The maximum monthly/seasonal mean values of Temp and SST occurred in summer (especially in August), and the minimum values in winter (January for Temp and February for SST). Monthly/seasonal mean SWH was highest in winter (especially in December) and lowest in summer (June), while the monthly/seasonal variations in wind speed over most of the coastal waters (except for the southern part of Jeju Island) were similar to those of SWH. In addition, sea fog during spring and summer was likely to be in the form of advection fog, possibly because of the high Temp and low SST (especially clear SST cooling in the eastern part of South Sea in summer), while autumn sea fog varied between different coastal waters (either advection fog or steam fog). The SST (and Temp-SST) during sea fog events in all coastal waters was lower (and more variable) than during non-sea-fog events, and was up to -5.7℃ for SST (up to 5.8℃ for Temp-SST).

Characteristics of Climate in the Eastern Coastal Regions of Korean Peninsula (한반도 동해안 지방의 기후 특성)

  • KIM Young-Seup;HAN Young-Ho;SHIN Soo-Kyeong;HONG Sung-Kun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.314-325
    • /
    • 1994
  • Characteristics of climate in the eastern coastal regions of Korean Peninsula were studied using the meteorological and coastal sea surface temperature (SST) data which were compiled from 1961 to 1990. In the winter half year (from October to March), air temperature (AT) and precipitation of the eastern coastal regions were considerably higher than those of the western and inland regions, but relative humidity was $8{\sim}15\%$ lower. AT of coastal regions was closely related to the variation of coastal SST. These characteristics were more noticeable in the eastern coastal areas and in lower latitude regions. Quantitatively, the $1.0^{\circ}C$ variation of coastal SST may have resulted in the $1.0^{\circ}C{\sim}1.5^{\circ}C$ variation for AT in coastal regions. In the same way as temperature, vapor pressure in coastal regions was also influenced by coastal SST. Relative humidity change corresponding to the $1.0^{\circ}C$ variation of coastal SST was $3.7\%{\sim}6.5\%$. Net heat exchange amounts were positive (sea surface gaining energy) in all coastal regions. Sea surface gained net heat from March to September, and lost it from October to February. Variation of AT in coastal regions was also related to the sensible and latent heat exchanges. Sensible and latent heat amount corresponding to the $1.0^{\circ}C$ variation of AT were $10Wm^{-2}$ at Kangnung, and $8Wm^{-2}$ at Pohang and $13Wm^{-2}$ at Pusan.

  • PDF

A Three-Dimensional Numerical Study of Coastal Upwelling in the Northern Japanese Coastal Region with the Passage of Typhoon Oliwa (3차원 원시모델을 이용한 태풍통과시 일본 북부 연안역에서 발생한 연안용승 연구)

  • HONG Chul-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.723-734
    • /
    • 2003
  • A three-dimensional numerical model (POM) is implemented to examine coastal upwelling in the northern Japanese coastal region with the passage of Typhoon Oliwa in September 1997. Observed sea surface temperature (SST) decreased suddenly ranging from $-6\;to\;-7^{\circ}C$ in the coastal regions, and such a SST decrease state lasted for more than ten days after the typhoon passed. The model successfully reproduces the observation and gives a clear explanation, the sudden decrease of SST occurred in the process of coastal upwelling with Ekman dynamics. The model also describes the sea surface cooling in the open ocean with vertical velocity.

Interannual Variability and Long-term Trend of Coastal Sea Surface Temperature in Korea (한국 연안 표층수온의 경년변동과 장기변화)

  • Min, Hong-Sik;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.415-423
    • /
    • 2006
  • Interannual variation and long-term trends of coastal sea surface temperature (SST) in Korea were investigated by analyzing 27 coastal SST time series from 1969 to 2004. Long-term linear increasing trend was remarkable with the rate over $0.02^{\circ}C/year$ at almost all the stations. The slope of long-term linear trend was larger at the stations along the eastern coast than in the western and southern regions. It was also noticeable that there was a common tendency of interannual variability with the period of 3-5 years at most of the stations. SST was lower in the 1970's and early 1980's while it was higher in the 1990's and early 2000's after the increase in the late 1980's. The pattern of the interannual variability of SST was similar to that of air temperature. Increasing trend of minimum SST in winter was obvious at most stations na it was larger along the eastern coast, while the linear trend of maximum SST in summer was less definite. Therefore, the decreasing tendency of annual amplitude was mainly due to the increasing tendency of SST in winter.

Numerical Simulation of $NO_2$Concentration considering SST Effects (SST 효과를 고려한 계절별 $NO_2$농도 수치모의)

  • 원경미;이화운;김유근
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.187-194
    • /
    • 2001
  • For the purpose of predicting air pollutants concentration in Pusan coastal urban, we used an Eulerian model of flow and dispersion/chemistry/deposition process considering SST effects which estimate through POM. The results of air quality model including emission from various sources show that the seasonal variation pattern of respective pollutants was affected by the seasonal SST fields and local circulation. Horizontal deviation of diurnal SST was 2.5~4K, especially large gradients in coastal region. Through numerical simulation of wind fields we predicted that local circulation prevailed during daytime in summer and nighttime in winter. So high concentration distribution showed toward inland in spring and summer seasons, while high concentration distribution showed at inland near coast in autumn and winter.

  • PDF

SST Effect upon Numerical Simulation of Atmospheric Dispersion (대기확산의 수치모의에서 SST 효과)

  • 이화운;원경미;조인숙
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.767-777
    • /
    • 1999
  • In the coastal region air flow changes due to the abrupt change of surface temperature between land and sea. So a numerical simulation for atmospheric flow fields must be considered the correct fields of sea surface temperature(SST). In this study, we used variables such as latent heat flux, sensible heat flux, short and long wave radiation of ocean and atmosphere which exchanged across the sea surface between atmosphere and ocean model. We found that this consideration simulated the more precise SST fields by comparing with those of the observated results. Simulated horizontal SST differences in season were 2.5~4$^{\circ}C$. Therefore we simulated the more precise atmospheric flow fields and the movement and dispersion of the pollutants with the Lagrangian particle dispersion model. In the daytime dispersion pattern of the pollutants emitted from ship sources moved toward inland, in the night time moved toward sea by land/sea breeze criculation. But air pollutants dispersion can be affected by inland topography, especially Yangsan and coastal area because of nocturnal wind speed decrease.

  • PDF

Quantifying of the Persistent Periods of the Positive and Negative Sea Surface Temperature Anomalies at the Coastal Areas of the Korean Peninsula (한국연안 이상고수온과 저수온의 지속성 기간의 정량화)

  • 서영상;황재동;장이현;강용균
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.167-171
    • /
    • 2001
  • The magnitudes of sea surface temperature (SST) anomalies at 13 coastal stations along the Korean peninsula in the summer and winter for the past 29years (1969-1997) are more larger than those in the spring and autumn. The periods of positive SST anomalies (negative SST anomalies) longer than 1$^{\circ}C$ were 75(74.5) months in the eastern coast of Korea, 47.8(51.6) months in the southern coast of Korea and 69.5(69.8) months in the western coast of Korea during the past 348 months (1969-1997). The predominant periods of the low-pass filtered monthly SST anomalies are 3 years or 13 months, even another predominant period is 24 months. The spatial variation of SST anomalies were confined by regional seas of the Korean peninsula, such as the East Sea, the South Sea and the West Sea itself.

  • PDF

Vertical Temperature Profile in the Yellow Sea according to the Variations of Air Temperature

  • CHO Kyu-Dae;CHO Kwang-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 1988
  • The vertical temperature profiles of the Yellow Sea in summer are investigated by means of the nine air temperature (AT) patterns which are classified with the AT of winter and summer. The sea surface temperature (SST) is high when the AT of summer is high, and vice versa. The gradient of thermocline in the offshore region is higher than that in the coastal region and is not always favorable with the AT patterns. The relation between sea bottom temperature (SBT) and the AT of winter is favorable when the SBT is averaged in the coastal and offshore stations. In addition, the SST of coastal stations is higher than that of offshore stations because of the strong mixing by the tidal current in the coastal region. The correlation between the AT and the SST of August is favorable (r=0.44-0.69), while the correlation between the AT of February and the SBT of August is not favorable except the stations, A2 (r=0.57) and B2 (r=0.61).

  • PDF