• Title/Summary/Keyword: Coal fired power plants

Search Result 177, Processing Time 0.025 seconds

An Experimental Study on the Physical Properties of Foamed Concrete Using Bottom Ash (바텀 애쉬를 이용한 기포콘크리트의 물리적 특성에 관한 실험적 연구)

  • Kang Ki Woong;Kang Chul;Kwag Eun goo;Shin hong cheol;Kwon Ki Joo;Kim Jin Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.525-528
    • /
    • 2004
  • The annual consumption of coal by coal-fired power plants is increasing. Also a large amount of ash is produced. The disposal of this large amount of ash makes the serious environmental problems and economical loss. Fly ash among the ash produced is used in building industries as a substitute to cement in concrete. But bottom ash is not used because of its poor properties. This study is aimed at the production of foamed concrete using bottom ash, to examine the physical properties of foamed concrete is manufactured by autoc1aving, and to exhibit the fundamental data to use it in site.

  • PDF

The Development Of Program Based On Model to Control Generator Output in Power Plant (모델 기반의 화력발전소 발전기 출력 제어 프로그램 개발)

  • Lim, Geon-Pyo;Kim, Mun-Soo;Choi, In-Kyu;Park, Doo-Yong;Kim, Ho-Yol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.614-622
    • /
    • 2010
  • The goal of this paper is to develope the control program based on model which can be applied to 1000MW class coal fired thermal power plant. 1000MW class power plant has the higher efficiency and lower cost because the steam conditions of the ultra super-critical process are higher than them of the previous power plants in temperature and pressure. The program includes the state variable controls which have the desired characteristics for the higher temperature and pressure. The program had been developed successfully using advanced process control. The simulation results using the new control program showed the better performance and safer control than them of the previous control program and we could verify the application possibility of the new program for the actual power plant through the load test, comparison, analysis and tuning.

A Study on Turbine Bypass System in a 500MW Rated Coal Fired Supercritical Thermal Power Plant with Sliding Pressure Operation (변압운전 방식의 500MW 초임계압 석탄 화력발전소 터빈 우회계통에 제어에 관한 고찰)

  • Choi, In-Kyu;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1663-1664
    • /
    • 2008
  • Many years ago, most of thermal power plants built in this country were of subcritical pressure, of medium or small size, of constant pressure operations and of drum type steam generators with circulation type boilers. But, nowadays almost all of them were of high efficiency, of supercritical pressure, of big capacity, of sliding pressure operations, and of once through type steam generators. Presently built once through boilers introduce turbine bypass systems to variable pressure operation which eliminates unexpected materials in boiler tube during startup, minimizes fuel loss by short startup period and eventually improve both total efficiency and power system stability.

  • PDF

Development and Evaluation of Coal-dust Water Flocculant using Chitosan (키토산을 이용한 탄진수 응집제 개발 및 평가)

  • Hong, Woong-Gil;Nah, Jae-Woon;Jeong, Gyeong-Won
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.139-142
    • /
    • 2021
  • Coal-fired power plants use coal as the main raw material, and when a coal is moved, a dust generation and spontaneous ignition of coal occur. To prevent this, water is sprayed. As a result, wastewater called "coal-dust water" flows out of coal dust and water mixed together, causing environmental pollution. In this study, in order to solve this problem, we developed a natural flocculant that can purify water by aggregating fine dust using chitosan and tried to prove its applicability. It was found that the optimum flocculation concentration was 4 ppm by adding various concentrations of flocculant to the coal-dust water, and it was confirmed that the developed material had very good coal-dust flocculation capacity through permeability and coal-dust removal efficiency. In addition, the cytotoxicity of the flocculant was evaluated through the MTT assay and it was found that there is no toxicity at all. We believe that the flocculant developed in this study can effectively adsorb coal-dust without affecting human and natural ecosystems.

The Study on the Comparison of the ISCST3 Model and Receptor Model by Dispersion Tracing of Particulate Matter from Large Scale Pollution Sources (대단위배출원에서 기인한 입자상오염물질의 확산ㆍ추적을 통한 ISCST3모델과 수용모델의 비교연구)

  • 전상기;이성철;박경선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.789-803
    • /
    • 2003
  • The purpose of this study is to compare the usefulness between Gaussian dispersion model and receptor model with the experimental result of the dispersion tracing of the particulate pollutants from Taean coal-fired power plants. For this purpose, the component analysis of the collected PM 10 samples was performed. In order to trace the pollution sources, factor analysis was done with the result of the component analysis. As a result of the correlativity analysis of the fifteen power plants' profiles offered by US EPA, the correlativity of No.11202 source profile showed highest rate up to 84.5%. Thus it was adopted as proper one and the contribution rate by each pollution source was calculated by Chemical Mass Balance (CMB)-8 model. The contribution rate, which was the effect rate of the power plants on each measuring point, were calculated with a range of 24∼52% and the standard error was below 0.9 $\mu\textrm{g}$/㎥. This indicates the selection of the source profile was appropriate. Also, the concentrations of each point were calculated by the ISCST3 which is suggested by US EPA as one of the regulatory Gaussian dispersion model. The calculation result showed that the predicted concentration was 50∼58 $\mu\textrm{g}$/㎥, comparing with the measured result of 9∼65 $\mu\textrm{g}$/㎥. It was found that the concentration calculated by ISCST3 was underpredicted. It was thought that the receptor model was more favorable than the Gaussian dispersion model in estimating the effect of the particulate matter on a certain receptive point.

Economic Analysis of Plant Utilities Under Environment Factor (환경요소를 고려한 발전설비의 경제성 평가)

  • 정석재;김경섭;박진원
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.35-43
    • /
    • 2004
  • The purpose of this study is an economic analysis of power plant utilities by comparing electricity generating cost including environmental costs. Considering the enormous role of electricity in the national economy, it is very important to study the effect of environmental regulation on the electricity sector. Because power utilities need for large investment during construction, operation and maintenance, and also require much construction lead time. Economic analysis is the important process in the electric system expansion planning. This paper compares the costs of electricity generation including environmental costs between a coal-fired power plant and an LNG combined cycle power plants. With the simulation, this study surveys the sensitivity of fuel prices, interest rate and carbon tax. In each case, this sensitivity can help to decide which utility is economically better in environmental regulation circumstance.

  • PDF

A Study on Wire-rope Type Furnace Scaffolding and Its Lifting System for Large-sized Boiler (대형 보일러 와이어로프 노내비계 및 인양시스템에 관한 연구)

  • HA, Seung Woo;Lee, Tae Ho;Lee, Hae Seung;Kim, Jeung Min;You, Tai Woo;Cho, Sun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.679-683
    • /
    • 2016
  • Boilers of large-sized coal-fired power plants are being operated under very poor conditions such as continuous operation or repeating of start-up and shutdown for a stable supply of electricity. Thus periodic inspection and maintenance are required to ensure reliability of operation. The loads of existing scaffolding systems for the maintenance of boilers are concentrated in the lower parts structurally, which may cause a serial collapse of the overall scaffolding system when there are problems in some members. Therefore, in this study, a safe furnace scaffolding system is developed by dispersing the loads in the upper part, as well as minimizing the hazards of serial collapsing. In addition, for cases where the direct installation of furnace scaffolding is challenging owing to the structure of the boiler tube, a lifting system for the installation of furnace scaffolding is developed so that furnace scaffolding can be supported to secure the integrity of the power generating facility.

A Review of Pilot Plant Studies on Elemental Mercury Oxidation Using Catalytic DeNOxing Systems in MW-Scale Coal Combustion Flue Gases (MW급 석탄연소 배가스에서 탈질촉매시스템을 이용한 원소수은 산화 실증사례)

  • Kim, Moon Hyeon;Nguyen, Thi Phuong Thao
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.207-216
    • /
    • 2021
  • Major anthropogenic emissions of elemental mercury (Hg0) occur from coal-fired power plants, and the emissions can be controlled successfully using NH3-SCR (selective catalytic reduction) systems with catalysts. Although the catalysts can easily convert the gaseous mercury into Hg2+ species, the reactions are greatly dependent on the flue gas constituents and SCR conditions. Numerous deNOxing catalysts have been proposed for considerable reduction in power plant mercury emissions; however, there are few studies to date of elemental mercury oxidation using SCR processes with MW- and full-scale coal-fired boilers. In these flue gas streams, the chemistry of the mercury oxidation is very complicated. Coal types, deNOxing catalytic systems, and operating conditions are critical in determining the extent of the oxidation. Of these parameters, halogen element levels in coals may become a key vehicle for obtaining better Hg0 oxidation efficiency. Such halogens are Cl, Br, and F and the former one is predominant in coals. The chlorine exists in the form of salts and is transformed to gaseous HCl with a trace amount of Cl2 during the course of coal combustion. The HCl acts as a very powerful promoter for high catalytic Hg0 oxidation; however, this can be strongly dependent on the type of coal because of a wide variation in the chlorine contents of coal.

Combustion Characteristics and Activation Energy From Thermogravimetric Analysis of Bituminous and Anthracite Coal (TGA에 의한 유.무연탄의 연소특성과 활성화에너지 비교)

  • 김성철;최병선;이현동;홍성선
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.170-175
    • /
    • 1996
  • This study is to determined the activation energy from TGA experimental data for the bituminous and anthracite coals of three kinds which are being used in the domestic coal-fired power plants. TGA experimental data indicate that the weight loss temperature of bituminous coal is 200$^{\circ}C$ higher than that of anthracite coal. Activation energy of bituminous coal is in the range of 14∼20 Kcal/mole compared with 37∼55 Kcal/mole of anthracite coal. A reduction of particle size of coals results in the decrease of activation energy and activation energy has a good correlation with the weight loss percent of coal in the TGA experiment. Addition of CaCO$_3$ on anthracite coal caused to decrease the activation energy of 1∼23 Kcal/mole while activation energy of bituminous coal do not change significantly.

  • PDF

Characteristics of Acidic Gas Emissions from Combustion with Preblending of Coal and Sludge (석탄과 슬러지의 예혼합연소에 따른 산성가스 배출특성)

  • Shim, Sung-Hoon;Jeong, Sang-Hyun;Min, Hyo-Ki;Lee, Sang-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.103-108
    • /
    • 2014
  • Using dried sludge as a secondary fuel of a coal-fired power plant is proposed as an alternative option for sludge disposal. Because elemental contents of sludge are different from those of coal, different levels of acidic gas emissions are expected from the co-combustion of sludge with coal. In this study, sludge samples were obtained from 7 sewage treatment plants in Korea. Each sludge sample was combusted together with coal in a lab-scale combustor, and the concentrations of nitrogen oxides ($NO_x$), sulfur dioxide ($SO_2$), hydrogen chloride (HCl), chlorine ($Cl_2$) in the flue gas were analyzed. Compared to the combustion of coal only, $NO_x$ concentration was slightly higher in the flue gas from the co-combustion of coal and sludge. $SO_2$ emission increased with the combustion of sludge due to the higher content of sulfur in sludge than in coal. For most of the tested samples, the concentrations of HCl and $Cl_2$ were varied depending on the chlorine content in the sludge sample.