Acknowledgement
본 연구는 산업통상자원부의 재원으로 한국에너지기술평가원의 지원(20193410100050)을 받아 수행되었다.
References
- Zhao, S., Pudasainee, D., Duan, Y., Gupta, R., Liu, M., and Lu, J., "A Review on Mercury in Coal Combustion Process: Content and Occurrence Forms in Coal, Transformation, Sampling Methods, Emission and Control Technologies," Prog. Energy Combust. Sci., 73, 26-64 (2019). https://doi.org/10.1016/j.pecs.2019.02.001
- Zhao, L., Li, C., Zhang, X., Zeng, G., Zhang, J., and Xie, Y., "A Review on Oxidation of Elemental Mercury from Coal-Fired Flue Gas with Selective Catalytic Reduction Catalysts," Catal. Sci. Technol., 5, 3459-3472 (2015). https://doi.org/10.1039/C5CY00219B
- Gao, Y., Zhang, Z., Wu, J., Duan, L., Umar, A., Sun, L., Guo, Z., and Wang, Q., "A Critical Review on the Heterogeneous Catalytic Oxidation of Elemental Mercury in Flue Gases," Environ. Sci. Technol., 47(19), 10813-10823 (2013). https://doi.org/10.1021/es402495h
- Dranga, B.-A., Lazar, L., and Koeser, H., "Oxidation Catalysts for Elemental Mercury in Flue Gases - A Review," Catalysts, 2(1), 139-170 (2012). https://doi.org/10.3390/catal2010139
- Reddy, B. M., Durgasri, N., Kumar, T. V., and Bhargava, S. K., "Abatement of Gas-Phase Mercury - Recent Developments," Catal. Rev., 54(3), 344-398 (2012). https://doi.org/10.1080/01614940.2012.650966
- Lopez-Anton, M. A., Fernandez-Miranda, N., and Martinez-Tarazona, M. R., "The Application of Regenerable Sorbents for Mercury Capture in Gas Phase," Environ. Sci. Pollut. Res., 23(24), 24495-24503 (2016). https://doi.org/10.1007/s11356-016-7534-z
- Kim, M. H., "Performance Management of a DeNOx System for Stationary Sources and Regeneration Strategies of DeNOx Catalysts," Clean Technol., 22(3), 141-153 (2016). https://doi.org/10.7464/ksct.2016.22.3.141
- Niksa, S., Krishnakumar, B., and Ghoreishi, F., "Analytical Management of SCR Catalyst Lifetimes and Multipollutant Performance," J. Air Waste Manage. Assoc., 66(2), 215-223 (2016). https://doi.org/10.1080/10962247.2015.1107658
- Senior, C. L., "Oxidation of Mercury across Selective Catalytic Reduction Catalysts in Coal-Fired Power Plants," J. Air Waste Manage. Assoc., 56(1), 23-31 (2006). https://doi.org/10.1080/10473289.2006.10464437
- Negreira, A. S., and Wilcox, J., "DFT Study of Hg Oxidation across Vanadia-Titania SCR Catalyst under Flue Gas Conditions," J. Phys. Chem. C, 117(4), 1761-1772 (2013). https://doi.org/10.1021/jp310668j
- Stolle, R., Koeser, H., and Gutberlet, H., "Oxidation and Reduction of Mercury by SCR DeNOx Catalysts under Flue Gas Conditions in Coal Fired Power Plants," Appl. Catal. B, 144, 486-497 (2014). https://doi.org/10.1016/j.apcatb.2013.07.040
- Kim, M. H., Ham, S.-W, and Lee, J.-B., "Oxidation of Gaseous Elemental Mercury by Hydrochloric Acid over CuCl2/TiO2-Based Catalysts in SCR Process," Appl. Catal. B, 99(1), 272-278 (2010). https://doi.org/10.1016/j.apcatb.2010.06.032
- Lee, C. W., Srivastava, R. K., Ghorishi, S. B., Karwowski, J., Hastings, T. W., and Hirschi, J. C., "Pilot-Scale Study of the Effect of Selective Catalytic Reduction Catalyst on Mercury Speciation in Illinois and Powder River Basin Coal Combustion Flue Gases," J. Air Waste Manage. Assoc., 56(5), 643-649 (2006). https://doi.org/10.1080/10473289.2006.10464475
- Galbreath, K. C., and Zygarlicke, C. J., "Mercury Transformations in Coal Combustion Flue Gas," Fuel Process. Technol., 65-66, 289-310 (2000). https://doi.org/10.1016/S0378-3820(99)00102-2
- Srivastava, R. K., Lee, C. W., and Hirschi, J., "Evaluation of SCR Catalysts for Combined Control of NOx and Mercury," U.S. Environmental Protection Agency, Report # EPA-600/R-04/130 (2004).
- Serre, S. D., Lee, C. W., Chu, P., and Hastings, T. W., "Evaluation of the Impact of Chlorine on Mercury Oxidation in a Pilot-Scale Coal Combustor - The Effect of Coal Blending," Paper No. 83, 7th Power Plant Air Pollutant Control Mega Symposium 2008, Baltimore, MD (August 2008).
- Cao, Y., Chen, B., Wu, J., Cui, H., Smith, J., Chen, C.-K., Chu, P., and Pan, W.-P., "Study of Mercury Oxidation by a Selective Catalytic Reduction Catalyst in a Pilot-Scale Slipstream Reactor at a Utility Boiler Burning Bituminous Coal," Energy Fuels, 21(1), 145-156 (2007). https://doi.org/10.1021/ef0602426
- Kikkawa, H., Shimohira, W., Nagayasu, T., Kiyosawa, M., Nagai, Y., and Kagawa, S., "Highly-Efficient Removal of Toxic Trace Elements and Particulate Matter in Flue Gas Emitted from Coal-fired Power Plants by Air Quality Control System (AQCS)," Mitsubishi Heavy Industries Tech. Rev., 52(2), 89-96 (2015).
- Jimenez, A., "Mercury Oxidation Behavior of a New Advanced Selective Catalytic Reduction Catalyst Formulation," Electric Power Research Institute (EPRI), Report No. 1023398 (2011).
- Favale, A. C., Guglielmo, S., Jin, P., Nagai, Y., and Tyree, C. A., "An SCR Can Provide Mercury Removal Co-Benefits," Power, October 1 (2011).
- Shin, D., Kim, M. H., and Han, J. W., "Structure-Activity Relationship of VOx/TiO2 Catalysts for Mercury Oxidation: A DFT Study," Appl. Surf. Sci., 552, 149462 (2021). https://doi.org/10.1016/j.apsusc.2021.149462
- Brickett, L., and Lee, C. W., "Power Plant Evaluation of the Effect of Selective Catalytic Reduction on mercury," Electric Power Research Institute (EPRI), Report No. 1005400 (2002).
- Laudal, D. L., Thompson, J. S., Pavlish, J. H., Brickett, L. A., Chu, P., Srivastava, R. K., Lee, C. W., and Kilgroe, J. D., "Mercury Speciation at Power Plants Using SCR and SNCR Control Technologies," Electronic Martkets, 53, 16-22 (2003).
- O'Palko, A., "Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet Flue Gas Desulfurization System," Electric Power Research Institute (EPRI), Report No. 1021608 (2010).
- Laudal, D. L., Brown, T. D., and Nott, B. R., "Effects of Flue Gas Constituents on Mercury Speciation," Fuel Process. Technol., 65-66, 157-165 (2000). https://doi.org/10.1016/S0378-3820(99)00083-1
- Agarwal, H., Stenger, H. G., Wu, S., and Fan. Z., "Effects of H2O, SO2, and NO on Homogeneous Hg Oxidation by Cl2," Energy Fuels, 20(3), 1068-1075 (2006). https://doi.org/10.1021/ef050388p
- Hall, B., Schager, P., and Lindqvist, O., "Chemical Reactions of Mercury in Combustions Flue Gases," Water Air Soil Pollut., 56, 3-14 (1991). https://doi.org/10.1007/BF00342256
- Kiil, S., Nygaard, H., and Johnsson, J. E., "Simulation Studies of the Influence of HCl Absorption on the Performance of a Wet Flue Gas Desulphurisation Pilot Plant," Chem. Eng. Sci., 57(3), 347-354 (2002). https://doi.org/10.1016/S0009-2509(01)00387-6