• Title/Summary/Keyword: Coal Separator

Search Result 9, Processing Time 0.029 seconds

An Experimental Study on the Separating Effect of Pulverized Coal at Coal Nozzle with Coal Separator (석탄 노즐내 미분탄 분리장치의 입자 분리 효과에 관한 실험적 연구)

  • Kim, Hyuk-Je;Song, Si-Hong;Lee, Gun-Myung;Kim, Sang-Hyeun;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.764-769
    • /
    • 2001
  • Recently, according to increase in the requirement of electric power, a thermoelectric power plant equipped with pulverized coal combustion system is highly valued, because coal has abundant deposits and a low price compared with others. For efficient use of coal fuel, most of plant makers are studying to improve combustion performance and flame stability, and reduce pollutant emission. One of these studies is how to control the profile of particle injection and velocity dependant on coal nozzle. Basically, a mixed flow of gas and particle in coal nozzle is required to have appropriate injection and concentration distribution at exit to achieve flame stability and low pollutant, but it is very difficult to obtain that without help of a coal separating device within nozzle. In this study, each distribution of air and coal flow rate is measured for the coal nozzle with coal separator developed by us. The coal concentration at exit is various according to inlet swirl values and positions of coal separator. Also pressure drop is measured for various operating conditions of this nozzle. From these results, we can find the separation characteristic of new developed coal separator, and select proper operation range of coal nozzle. When this coal nozzle is applied to actual plant, these investigations will be very useful to confirm the shape of coal separator to have efficient particle injection.

  • PDF

An experimental study for the coal particle separator in the pulverizer model with dynamic classifier (Dynamic classifier가 장착된 미분기 모델에서의 석탄 입자 분리 실험)

  • Lee, Gun-Myung;Kim, Hyuk-Je;Kim, Hyeuk-Pill;Kim, Sang-Hyeun;Ha, Jong-Kang
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.688-692
    • /
    • 2001
  • Three-dimensional experimental analyses were conducted in the pulverizer simplified isothermal model. The experimental model was constructed on a 1/3.5 scale of 500MW pulverized coal boiler. The purpose of this study is to investigate the characteristics of coal particle separator and the pressure loss in the pulverizer models with dynamic classifier. Without regards a shape of separator top, the results showed that the increase of dynamic classifier rpm was induced in finer coal particle. But the capacity of total mass per minute was reduced. Also, the increase of dynamic classifier rpm had no effect on total pressure loss, but an increase of inlet velocity was induced that the rise of total pressure loss in the pulverizer models with dynamic classifier.

  • PDF

The effect of design parameters on the pulverized coal separator efficiency (미분탄 분리장치의 성능에 영향을 미치는 설계인자)

  • Lee, Gun-Myung;Ha, Jong-Kwang;Ahn, Sang-Taek;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.385-389
    • /
    • 2003
  • Three-dimensional experimental analysis was conducted in the pulverizer simplified isothermal model. The experiment model was constructed on a 1/3.5 scale of 500MW pulverizer. The purpose of this study is to investigate the effect of design parameters on the pulverized coal separator efficiency. Where used pulverized coal separator design parameters are guide vane angle, static classifier angle, dynamic classifier rpm. Taguchi method was used to find the effective design parameters related to pulverized coal separator efficiency. The results of the experiment showed that guide vane angle and dynamic classifier rpm were the design key parameters. In addition to the total number of experiment cases were reduced by Taguchi method.

  • PDF

Pilot-Scale Testing of a Vibrating Electrostatic Separator for Fly Ash Decarbonization

  • Yoon, Roe-Hoan;Eric Yan;Han, Oh-Hyung;Park, Byung-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.644-649
    • /
    • 2001
  • A new electrostatic separator has been developed for the removal of unburned carbon from fly ash. In this separator, a flowing film of fly ash is created on the surface of a vibrating electrode. Conducting particles such as unburned carbon acquire electrostatic charges and jump out of the flowing film so that they can be removed from the non-conducting fly ash particles moving forward. The new separator has been tested successfully using a pilot-scale test unit at 0.5 tons/hr capacity. Based on the successful test results, a larger unit is being constructed at the present time.

  • PDF

Experimental Study on Oil Separation from Fry-dried Low-rank Coal

  • Ohm, Tea-In;Chae, Jong-Seong;Lim, Jae-Ho;Moon, Seung-Hyun
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • Low-rank coal with high water content (32.3 wt%) was dried by fry drying, and the fuel characteristics of the dried coal from which the oil was separated by using a high-speed centrifugal separator were analyzed. After fry drying for 6 min and 10 min, the water content decreased to 5.0 wt% and 4.2 wt% respectively. The higher calorific value (HCV) of the coal increased remarkably after fry drying, from 11,442.0 kJ/kg-wet. The oil content of the fry-dried coal was 15.0 wt% and it decreased with an increase in the reheating temperature: 9.7 wt% at $80^{\circ}C$ to 9.3 wt% at $100^{\circ}C$, and then to 8.5 wt% at $120^{\circ}C$. The recovered oil could then be reused. According to of thermogravimetric analysis (TGA), there was no difference in the weight loss patterns of the coal samples with different coal diameters at a reheating temperature of $120^{\circ}C$. This was because the amount of oil separated by the centrifugal separator was affected by the reheating temperature rather than the coal diameter. And derivative thermogravimetry (DTG) curves of raw coal before the fry-drying process, a peak is formed at $400^{\circ}C$ in which the volatile matter is gasified. In case of the fry-dried coal, the first peak is generated at $350^{\circ}C$, and the second peak is generated at $400^{\circ}C$. The first peak is caused by the oil that is replaced with the water contained in the coal during the fry-drying process. Further, the peaks of the coal samples in which the oil is separated at a reheating temperature of $80^{\circ}C$, $100^{\circ}C$, $120^{\circ}C$, respectively are smaller than that of the coal in which the oil is not separated, and this is caused by that the oil is separated by the centrifugal separator.

Comparision of Combustion Characteristics of the Different Property Coal in Cyclone Combustor (사이클론 연소기에서 성상이 다른 석탄의 연소 특성 비교)

  • Hong, Sung-Sun;Hwang, Kap-Sung;Choi, Byung-Sun
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.337-344
    • /
    • 1994
  • Two coals which have a quite different properties were selected to compare the combustion characteristics in a cyclone combustor. The capacity of the combustion test rig is about 75kW and total volume is 5.7 liters. The pulverized sample coals are well burned from fuel rich(air ratio 0.4) to fuel lean(airs ratio 1.6). Two different property coals show quite different patterns of ash collection in slag pot, dust separator and combustion chamber. Combustion temperature of subbituminous coal is about $100^{\circ}C$ lower than bituminous coal at the entire region, and in case of bituminous coal, hot spot appeared at the lower part and axial line of the combustion chamber.

  • PDF

Characteristics of Coal Methanation in a Hydrogasifier (수소가스화기에서 석탄의 메탄화 반응 특성)

  • Lee, S.H.;Yoon, S.J.;Choi, Y.C.;Kim, J.H.;Lee, J.G .
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.631-635
    • /
    • 2006
  • To investigate the characteristics of substitute natural gas (SNG) production from direct coal methanation, the continuous lab-scale entrained flow hydrogasifier (I.D. : 0.025 m, Height : 1.0 m) was used in this experiment. The hydrogasification system consisted of high pressure gas handling system, high pressure coal feeder, entrained flow hydrogasifier, and unreacted char separator. The experiment was performed at the various conditions of reaction temperature ($600{\sim}800^{\circ}C$), $H_2$/coal ratio (0.2~0.4), and coal feed rate (0.8~2.5 g/min). Although it was shown that carbon conversion was different trends with coals from the methanation results for 6 sample coals, the carbon conversion increased with increasing reaction temperature. And it increased with increasing H2/coal ratio, whereas the concentration of CH4 decreased. Also. the carbon conversion increased with the carbon content of coal sample and had a maximum value at volatile matter content of 35 wt%.

Status of Technology development of RDF for municipal wastes in Korea (국내 생활폐기물 RDF 기술개발 동향)

  • Lee, Ha-Baik;Choi, Yeon-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.705-708
    • /
    • 2007
  • RDF means Refuse Derived Fuel, it is made pellets with combustible materials in municipal waste and RDF use a renewable energy instead with natural coal. RDF Technology is a essential one to treat municipal waste steadily and secure a energy source in Korea. Already RDF Technology commercialize in Japan, USA, Europe and there are many of RDF production plants and utilization facilities. The first RDF plant was constructed in Wonju Korea in October 2006 and is good operation. Government accelerate establishment of concerning laws and support to develop technology and spread RDF plants and utilization facilities.

  • PDF

A Welding Characteristics of Large Caliber-Thick Plate Pressure Vessel Low Alloy Steel (Mn-Mo) (대구경-후판 압력용기용 저 합금강(Mn-Mo)의 용접특성)

  • Ahn, Jong-Seok;Park, Jin-Keun;Yoon, Jae-Yeon
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.10-14
    • /
    • 2012
  • Recently the low alloy steel plate made with manganese-molybdenum is used widely in steam drum and separator of the new coal-fired power plant boiler. This material is suitable for the vapor storage of high pressure and high temperature. The high temperature creep strength of Mn-Mo alloy is higher than the carbon plate(SA516) that used in the subcritical pressure boiler. It reduces the thickness of the pressure vessel and makes the lightweight possible. Recently in the power plant boiler operation and production process, the damage has happened frequently in the heat affected zone and base material according to the hydrogen crack and delayed crack. This paper describes the research result about the damage case experienced in the boiler steam drum production process and present the optimum manufacture method for the similar damage prevention of recurrence.