• Title/Summary/Keyword: CoOOH

Search Result 36, Processing Time 0.023 seconds

Heterojunction of FeOOH and TiO2 for the Formation of Visible Light Photocatalyst

  • Rawal, Sher Bahadur;Chakraborty, Ashok Kumar;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2613-2616
    • /
    • 2009
  • FeOOH/$TiO_2$, a heterojunction structure between FeOOH and $TiO_2$, was prepared by covering the surface of the $\sim$100-nm-sized FeOOH particles with Degussa P25 by applying maleic acid as an organic linker. Under visible light irradiation (${\lambda}{\geq}$ 420 nm), FeOOH/$TiO_2$ showed a notable photocatalytic activity in removal of gaseous 2-propanol and evolution of $CO_2$. It was found that FeOOH reveals a profound absorption in the spectral range of 400 - 550 nm, and its valence band (VB) level is located relatively lower than that of $TiO_2$. The considerable photocatalytic efficiency of the FeOOH/$TiO_2$ under visible light irradiation was therefore deduced to be caused by the hole transfer between the VB of FeOOH and $TiO_2$.

The Comparison of Sintering Characteristics between the PVA-Al(III) Complex added $UO_2$Pellet and AlOOH added $UO_2$pellet (PVA-Al(III) 착물 첨가 $UO_2$소결체와 AlOOH 첨가 $UO_2$소결체의 소결 특성 비교)

  • Lee, Sin-Yeong;Yu, Ho-Sik;Lee, Seung-Jae;Kim, Hyeong-Su;Bae, Gi-Gwang
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.55-61
    • /
    • 2000
  • The sintering characteristics of PVA-Al(III) complex added $UO_2$ pellet and AlOOH added $UO_2$pellet were compared. The major phase of PVA-Al(III) complex and AlOOH decomposed at $1000^{\circ}C$ in $H_2$atmosphere was $\theta-Al_2O_3$. Compared with the apparent density of pure $UO_2$, that of AlOOH added $UO_2$ powder was higher but that of PVA-Al(III) complex was lower. the densification of AlOOH added $UO_2$ pellet was initiated at about $800^{\circ}C$, the densification of PVA-Al(III) complex added $UO_2$ pellet was initiated at about $900^{\circ}C$ respectively. In a view of pore size distribution, the PVA-Al(III) complex added $UO_2$ pellet appeared as monomodal type, whereas the AlOOH added $UO_2$ pellet appeared as bimodal type. The grain size of AlOOH added $UO_2$ pellet was about $13\mu\textrm{m}$ but the grain size of PVA-Al(III) complex added $UO_2$ pellet was increased up to about $36\mu\textrm{m}$.

  • PDF

Formation of Iron Oxides in a Waste Pickling Liquor (염산 산세 폐액에서의 철산화물의 회수)

  • Lee, S. R.;Jeong, Y. Y.;Ahn, Y. M.;Yoon, J.;Hwang, Y. G.
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.44-50
    • /
    • 1992
  • The $\alpha$-FeOOH powders were prepared by allkaline and acidic method on the small scale plant from the waste pickling liquor of iron. $\alpha$-FeOOH, $\alpha-Fe_2O_3$, $Fe_3O_4$ and ${\gamma}-Fe_2O_3$ powders were examined by TEM, SEM, TG-DTA, X-ray diffraction, VSM and chemical analysis. The results obtained from the experiment could be summerized as follows : the reaction time for the preparation of $\alpha$-FeOOH was observed to be smaller in the case of alkaline method and the products was acicular with the size of about $0.5\mu\textrm{m}$. The color of $\alpha-FeOOH and $\alpha-Fe_2O_3$was lovely yellow and red, respectively. The magnetic properties of $Fe_3O_4$ obtained by the reduction of $\alpha-Fe_2O_3$in the $H_2$ atomosphere at $370^{\circ}C$ for 1 hour showed 367(Oe) and 82.7(emu/g).

  • PDF

Growth Kinetics and Electronic Properties of Passive Film of Cobalt in Borate Buffer Solution (Borate 완충용액에서 코발트 산화피막의 생성 과정과 전기적 성질)

  • Park, Hyunsung;Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.320-327
    • /
    • 2017
  • In a borate buffer solution, the growth kinetics and the electronic properties of passive film on cobalt were investigated, using the potentiodynamic method, chronoamperometry, and single-frequency electrochemical impedance spectroscopy. It was found out that the unstable passive film ($Co(OH)_2$) and CoO of Co formed in the low electrode potential changes to $Co_3O_4$ and CoOOH while the electrode potential increases. And the composition of the passive films was varied against the applied potential and oxidation time. The oxide film formed during the passivation process of cobalt has showed the electronic properties of p-type semiconductor, which follow from the Mott-Schottky equation.

Optical and Structural Properties of Ammoniated GaOOH and ZnO Mixed Powders (암모니아 분위기에서 열처리된 GaOOH와 ZnO 혼합분말의 구조적·광학적 성질)

  • Song, Changho;Shin, Dongwhee;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.575-580
    • /
    • 2012
  • The purpose of this study is to investigate the crystalline structure and optical properties of (GaZn)(NO) powders prepared by solid-state reaction between GaOOH and ZnO mixture under $NH_3$ gas flow. While ammoniation of the GaOOH and ZnO mixture successfully produces the single phase of (GaZn)(NO) solid solution within a GaOOH rich composition of under 50 mol% of ZnO content, this process also produces a powder with coexisting (GaZn)(NO) and ZnO in a ZnO rich composition over 50 mol%. The GaOOH in the starting material was phase-transformed to ${\alpha}$-, ${\beta}-Ga_2O_3$ in the $NH_3$ environment; it was then reacted with ZnO to produce $ZnGa_2O_4$. Finally, the exchange reaction between nitrogen and oxygen atoms at the $ZnGa_2O_4$ powder surface forms a (GaZn)(NO) solid solution. Photoluminescence spectra from the (GaZn)(NO) solid solution consisted of oxygen-related red-emission bands and yellow-, green- and blue-emission bands from the Zn acceptor energy levels in the energy bandgap of the (GaZn)(NO) solid solutions.

Synthesis of Spindle Shape α-FeOOH Nanoparticle from Ferrous(II) Sulfate Salt (황산 제1철을 이용한 방추형 괴타이트 나노 입자의 합성)

  • Han, Yang-Su;You, Hee-Joun;Moon, Ji-Woong;Oh, You-Keun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.722-728
    • /
    • 2005
  • A wet-chemical route was utilized to obtain nanosized crystalline goethite ($\alpha$-FeOOH) particle, which was known as an oxidation catalyst in reducing carbon monoxide (CO) and dioxine during incineration. A cost-effective $FeSO_4{\cdot}7H_2O$ was used as starting raw material and a successive process of hydrolysis-oxidation was utilized as synthetic method. The effects of the initial $Fe^{2+}$ concentration, hydrolysis time and oxidation period on the crystalline phase and particle characteristics were systematically investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and BET analyses. It was found that the spindle-shaped crystalline $\alpha$-FeOOH particle with the width of 70 nm and the length of 200 nm could be obtained successfully when the initial concentration of 1.5 M, hydrolysis time of 4h, and oxidation period of 10 h, respectively. In addition, it was observed that the spindle-shaped $\alpha$-FeOOH particle consisted of nano-sized primary crystallites of $30\~50\;nm$, which were de-agglomerated into individual particle and successively re­agglomerated into spherical or irregular-shaped agglomerates beyond certain periods in the hydrolysis and oxidation process.

Effects of the Surface Coating Treatment of Cathode Materials on the Electrochemical Characteristics of Ni-MH Secondary Batteries (양극 활물질의 표면 코팅처리가 Ni-MH 2차 전지의 전기화학적 특성에 미치는 영향)

  • Kim, Byoung-Soub;Yang, Dong-Cheol;Park, Bong-Gi;Park, Choong-Nyeon;Park, Chan-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.495-503
    • /
    • 2011
  • The sealed nickel-metal hydride (Ni-MH) secondary battery are primarily used as energy storage for the HEV. But, the research on Ni-MH battery has focused on anode materials. In the present study, we investigate to improve the electrochemical characteristics of Ni-MH batteries using the surface treatment of $Ni(OH)_2$ cathode by CoOOH. Surface treated $Ni(OH)_2$ cathode showed significant improvement in the activation behavior, rate capability, charge retention, and cycle life of the batteries were significantly improved. In addition, the surface treated electrode exhibited the higher overvoltage for oxygen evolution than the untreated electrode. This phenomenon indicates that the charge efficiency can be improved by suppressing the oxygen evolution on cathode.

Identification of Derivatives of Cobalt-binding BLM-A2 by NMR

  • Lee, Seongeon;Shin, Donghyuk;Woo, Sunhee;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.133-146
    • /
    • 2012
  • Three different derivatives were obtained in the synthesis of cobalt-binding BLM-A2 and characterized by NMR and Mass spectrometry. It was found that Component 1 is Co(II)($2H_2O$)(BLM-A2), component 2 is Co(III)($OOH^-$)(BLM-A2) and component 3 is Co(III)($H_2O$)($OH^-$)(BLM-A2), respectively. Component 2 and 3 were interestingly dominated when CoBLM-A2 complex was synthesized under basic condition. In this experiment, it was revealed newly that the brown form (component 1) was 6-coordinated structure composed with not 5 ligands but 4 ligands from BLM-A2 and with $2H_2O$ as the axial ligands. The component 3 exhibiting a novel ligand configuration is found, and the structure of component 3 was observed to be very similar to that of component 1 in the kind of their ligands but one of the axial ligand is $OH^-$ instead of $H_2O$. These ligand configurations are different from the green form (component 2) exhibiting 6-coordinate structure composed of 5 ligands from BLM-A2 and one ligand of $OOH^-$, being consistent with former studies.

Characterization of LiCoO2 Synthesized via Structural and Compositional Variations of Precursors Prepared by Precipitation (침전법으로 제조된 전구체 성질에 의한 LiCoO2의 특성에 관한 연구)

  • Jeong, Myoung Kuk;Hwang, Chi Seok;Choi, Cheong Song
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.101-106
    • /
    • 2006
  • HT-$LiCoO_2$ powders were synthesized from hydroxide precursors in this study. The cobalt hydroxide compounds with hydrotalcite-like(${\alpha}$-phase) and/or brucite-like(${\beta}$-phase) structures as a component of the precursor were prepared in various PH conditions using precipitation method. It was found that various phase and compositions of cobalt hydroxides could be tailor-prepared via a careful control of preparation parameters such as the concentration ratio of $[OH^-]/[CO^{2+}]$ and aging time. The hydroxides $Co(OH)_2$ and LiOH were mixed with aqueous methyl-alcohol. The precursor of a HT-$LiCoO_2$ was synthesized via subsequent processes including evaporation, drying and aging. The transformation of tailor-made ${\beta}$-phase $Co(OH)_2$ to CoOOH and formation of solid solution in the precursor were achieved during aging. These results cause HT-$LiCoO_2$ to be synthesized at low temperature($600^{\circ}C$ ) for a short time(10min).

  • PDF

Preparation of Magnetite Nanoparticles by Two Step Reaction (2단계 반응에 의한 마그네타이트 나노입자의 제조)

  • Shin, Dae-Kyu;Riu, Doh-Hyung
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • Nano magnetite particles have been prepared by two step reaction consisting of urea hydrolysis and ammonia addition at certain ranges of pH. Three different concentrations of aqueous solution of ferric ($Fe^{3+}$) and ferrous ($Fe^{2+}$) chloride (0.3 M-0.6 M, and 0.9 M) were mixed with 4 M urea solution and heated to induce the urea hydrolysis. Upon reaching at a certain pre-determined pH (around 4.7), 1 M ammonia solution were poured into the heated reaction vessels. In order to understand the relationship between the concentration of the starting solution and the final size of magnetite, in-situ pH measurements and quenching experiments were simultaneous conducted. The changes in the concentration of starting solution resulted in the difference of the threshold time for pH uprise, from I hour to 3 hours, during which the akaganeite (${\beta}$-FeOOH) particles nucleated and grew. Through the quenching experiment, it was confirmed that controlling the size of ${\beta}$-FeOOH and the attaining a proper driving force for the reaction of ${\beta}$-FeOOH and $Fe^{2+}$ ion to give $Fe_3O_4$ are important process variables for the synthesis of uniform magnetite nanoparticles.