• Title/Summary/Keyword: Co-luminescence

Search Result 141, Processing Time 0.032 seconds

Synthesis and Characterization of Poly(9,9-dioctylfluorene-2,7-vinylene) for Light Emitting Diode Application

  • Jin, Sung-Ho;Park, Hye-Jin;Kim, Jin-Young;Lee, Kwang-Hee;Gal, Yeong-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.336-339
    • /
    • 2002
  • Fluorenevinylene-based EL polymers, poly(9,9-dioctylfluorene-2,7-vinylene) (PFV) and poly[(9,9-dioctylfluorene-2,7-vinylene)-co-{2-methoxy-5-(2 ethylhexyloxy)-1,4-phenylenevinylene}] (PFV-co-MEH-PPV), have been synthesized by Gilch polymerization method. The resulting polymers were soluble in common organic solvents and easily spin cast onto the indium-tin oxide (ITO) substrate. The weight average molecular weight and polydispersity of PFV and PFV-co-MEH-PPV were in the range of 22.2 - 43.2 x $10^4$ and 1.9 - 3.0, respectively. Double-layer light-emitting diodes with ITO/PEDOT/Polymer/Al configuration were fabricated. PFV-co-MEH-PPV showed better EL properties than those of PFV and MEH-PPV The turn-on voltage of poly(9,9dialkylfluorene) derivatives were dramatically decreased to the 2.5 V compared to fluorene-based EL polymers. The maximum brightness and luminescence efficiency were up 7 to 1350 cd/$m^2$ and 0.51 Cd/A.

  • PDF

Spectroscopic Characterization of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolution

  • Hee-Kyung Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.371-382
    • /
    • 2022
  • Carbonates are inorganic ligands that are abundant in natural groundwater. They strongly influence radionuclide mobility by forming strong complexes, thereby increasing solubility and reducing soil absorption rates. We characterized the spectroscopic properties of Am(III)-carbonate species using UV-Vis absorption and time-resolved laser-induced fluorescence spectroscopy. The deconvoluted absorption spectra of aqueous Am(CO3)2- and Am(CO3)33- species were identified at red-shifted positions with lower molar absorption coefficients compared to the absorption spectrum of aqua Am3+. The luminescence spectrum of Am(CO3)33- was red-shifted from 688 nm for Am3+ to 695 nm with enhanced intensity and an extended lifetime. Colloidal Am(III)-carbonate compounds exhibited absorption at approximately 506 nm but had non-luminescent properties. Slow formation of colloidal particles was monitored based on the absorption spectral changes over the sample aging time. The experimental results showed that the solubility of Am(III) in carbonate solutions was higher than the predicted values from the thermodynamic constants in OECD-NEA reviews. These results emphasize the importance of kinetic parameters as well as thermodynamic constants to predict radionuclide migration. The identified spectroscopic properties of Am(III)-carbonate species enable monitoring time-dependent species evolution in addition to determining the thermodynamics of Am(III) in carbonate systems.

Upconversion luminescence from poly-crystalline Yb3+, Er3+ co-doped NaGd(MoO4)2 by simple solid state method (Er3+, Yb3+ 이온이 동시 도핑된 NaGd(MoO4)2의 업컨버젼 분석)

  • Kang, Suk Hyun;Kang, Hyo Sang;Lee, Hee Ae;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.159-163
    • /
    • 2016
  • Up-conversion (UC) luminescence properties of polycrystalline $Er^{3+}/Yb^{3+}$ doped $NaGd(MoO_4)_2$ phosphors synthesized by a simple solid-state reaction method were investigated in detail. Used to 980 nm excitation (InfraRed area), $Er^{3+}/Yb^{3+}$ co-doped $NaGd(MoO_4)_2$ exhibited very weak red emissions near 650 and 670 nm, and very strong green UC emissions at 540 and 550 nm corresponding to the infra 4f transitions of $Er^{3+}(^4F_{9/2},\;^2H_{11/2},\;^4S_{3/2}){\rightarrow}Er^{3+}(^4I_{15/2})$. The optimum doping concentration of $Er^{3+}$, $Yb^{3+}$ for highest emission intensity was determined by XRD and PL analysis. The $Er^{3+}/Yb^{3+}$ (10.0/10.0 mol%) co-doped $NaGd(MoO_4)_2$ phosphor sample exhibited very strong shiny green emission. A possible UC mechanism for $Er^{3+}/Yb^{3+}$ co-doped $NaGd(MoO_4)_2$ depending on the pump power dependence was discussed.

Fabrication and $^{60}Co$ Gamma Induced Damage of Plastic Scintillators (플라스틱 섬광체의 제작과 $^{60}Co$ $\gamma$-선에 의한 방사선 손상)

  • Kim, Sung-Hwan;Nam, Seung-Hee;Cheon, Jong-Kyu;Kim, Wan;Kang, Hee-Dong;Kim, Do-Sung;Lee, Woo-Gyo;Doh, Sih-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.350-356
    • /
    • 2000
  • The optimum composition ratios of primary solute(p-terphenyl) and secondary solute(popop) have been investigated in order to fabricate plastic scintillator with higher light output and less radiation damage. The radiation damage induced by $^{60}Co$ $\gamma$-irradiation depends on mainly the concentration of secondary solute. The spectral range of the luminescence was $400{\sim}450\;nm$, its peak emission appeared at 415 nm. The transmittance and the light output were not changed by radiation damage up to $1{\times}10^4\;Gy$ irradiation with $^{60}Co$ $\gamma$-rays.

  • PDF

Changes of Optically Stimulated Luminescence Dosimeter Sensitivity with High Dose (고선량에 대한 광자극발광선량계의 방사선 민감도 변화 연구)

  • Han, Su Chul;Kim, Kum Bae;Choi, Sang Hyoun;Park, Seungwoo;Jung, Haijo;Ji, Young Hoon
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.98-104
    • /
    • 2016
  • We investigated the effect of high dose on the sensitivity of optically stimulated luminance dosimeters (OSLDs) on Co-60 gamma rays and used a commercial OLSD (Landauer, Inc., Glenwood, IL). New OSLDs were chosen arbitrarily and were irradiated with 1 Gy repeatedly. We confirmed the change in the radiation sensitivity after repeated irradiation. The OSLD sensitivity increased up to 3% after irradiating for seven times and decreased continuously after the eighth time. It dropped by approximately 0.35 Gy per irradiation. Finally, after irradiating for 30 times, the OSLD sensitivity decreased by approximately 7%. When the OSLDs were irradiated 10 times with 1 Gy after their irradiation using a high dose of 15 Gy and 30 Gy, their sensitivity decreased by 6% and 12%, respectively, compared to that before high-dose irradiation. The change in the OSLD sensitivity with a high dose could be modeled by an exponential equation. We confirmed the radiation sensitivity variation caused by a high dose, and the irradiation history of dosimeters was considered to reuse OSLDs irradiated with a high dose.

Near IR Luminescence Properties of Er-doped Sol-Gel Films (Er이 도핑된 졸-겔 코팅막의 발광특성)

  • Lim, Mi-Ae;Seok, Sang-Il;Kim, Ju-Hyeun;Ahn, Bok-Yeop;Kwon, Jeong-Oh
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.136-136
    • /
    • 2003
  • In fiber optic networks, system size and cost can be significantly reduced by development of optical components through planar optical waveguides. One important step to realize the compact optical devices is to develop planar optical amplifier to compensate the losses in splitter or other components. Planar amplifier provides optical gain in devices less than tens of centimeters long, as opposed to fiber amplifiers with lengths of typically tens of meters. To achieve the same amount of gain between the planar and fiber optical amplifier, much higher Er doping levels responsible for the gain than in the fiber amplifier are required due to the reduced path length. These doping must be done without the loss of homogeniety to minimize Er ion-ion interactions which reduce gain by co-operative upconversion. Sol-gel process has become a feasible method to allow the incorporation of Er ion concentrations higher than conventional glass melting methods. In this work, Er-doped $SiO_2$-A1$_2$ $O_3$ films were prepared by two different method via sol -Eel process. Tetraethylorthosilicate(TEOS)/aluminum secondary butoxide [Al (OC$_4$ $H_{9}$)$_3$], methacryloxypropylcnethoxysaane(MPTS)/aluminum secondary butofde [Al(OC$_4$ $H_{9}$)$_3$] systems were used as starting materials for hosting Er ions. Er-doped $SiO_2$-A1$_2$ $O_3$ films obtahed after heat-treating, coatings on Si substrate were characterized by X-ray din action, FT-IR, and N-IR fluorescence spectroscopy. The luminescence properties for two different processing procedure will be compared and discussed from peak intensity and life time.

  • PDF

Luminescence characterization of $YVO_4$: $Eu^{3+}$, $Bi^{3+}$ red phosphor by rapid microwave heating synthesis (급속 microwave 열처리 방법으로 합성한 $YVO_4$: $Eu^{3+}$, $Bi^{3+}$ 적색 형광체의 발광 특성)

  • Park, W.J.;Song, Y.H.;Moon, J.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.169-173
    • /
    • 2008
  • $Eu^{3+}$ and $Bi^{3+}$ co-doped $YVO_4$ phosphors were produced by a microwave heating process. When the microwave heating method was synthesized,. the particle size was very small and the particles tended to agglomerate. However, as the heating time increased, the particle size increased and the agglomeration decreased. The emission spectrum exhibited a weak band for $^5D_0{\longrightarrow}^7F_1$ at 594.91 and 602.3 nm and strong sharp peaks at 616.7 and 620.0 nm due to the $^5D_0{\longrightarrow}^7F_2$ transition of $Eu^{3+}$. Microwave heating synthesis can provide a product without long time heating as well as good homogeneous distribution of activators.

Trial to Identify Irradiated Corn Powder by Viscometric and Pulsed Photostimulated Luminescence (PPSL) Methods

  • Yi, Sang-Duk;Chang, Kyu-Seob;Yang, Jae-Seung
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.1
    • /
    • pp.82-87
    • /
    • 2001
  • A study was performed to establish detection methods by viscometric and pulsed photostimulated luminescence (PPSL) methods for irradiated com powder. Viscosity was determined using a Brookfield DV-rotation viscometer at 3$0^{\circ}C$ and operated at 30, 60, 90, 120, 150, 180, and 210 rpm. All irradiated samples showed a decrease in Viscosity with increasing stirring speeds (rpm) and irradiation doses. Treatments at 1~3 kGy significantly decreased the viscosity. The photon counts of irradiated corn powder were measured by PPSL immediately after irradiation and exhibited an increase with increasing irradiation dose. The photon counts of irradiated com powder almost disappeared with lapse of time in room conditions, but detection of irradiation was still possible after one month at darkroom conditions. Consequently, these results suggest that the detection of irradiated com powder is possible by both viscometric and PPSL methods.

  • PDF

Properties of Pulsed Photostimulated Luminescence and Thermoluminescence for Detection of Gamma-Irradiated Teas during Storage

  • Kausar, Tusneem;Kim, Byeong-Keun;Yang, Jae-Seung;Byun, Myung-Woo;Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.227-231
    • /
    • 2004
  • Green, black and oolong teas were irradiated by $^{60}$ Co-gamma rays (0~10 kGy) and were investigated for detection of irradiation treatment using pulsed photostimulated luminescence (PPSL) and thermoluminescence (TL) during storage. Teas irradiated at 2.5 kGy or more showed a photon count of greater than 5000 counts/60 sec while the non-irradiated yielded only 650~1000 count/60 sec. Correlation coefficients between irradiation dose and photon counts/60 sec were 0.8951, 0.7934 and 0.9007 for green, black and oolong teas, respectively. The TL glow curves for minerals isolated from the non-irradiated teas were situated at about 30$0^{\circ}C$ with a low intensity, but for irradiated samples were approximately 15$0^{\circ}C$ with a high intensity. The TL ratios (TL$_1$/TL$_2$), calculated from values after initial radiation and then after re-irradiation of the teas, were below 0.1 for the non-irradiated samples and higher than 1.44 for all irradiated samples, enhanced the reliability of the identification results for TL. The signal intensity of PPSL and TL for irradiated teas decreased with the lapse of post-irradiation storage time at room temperature but was still distinguishable from that of the non-irradiated samples even after one year.

Separating nanocluster Si formation and Er activation in nanocluster-Si sensitized Er luminescence

  • Kim, In-Yong;Sin, Jung-Hun;Kim, Gyeong-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.109-109
    • /
    • 2010
  • $Er^{3+}$ ion shows a stable and efficient luminescence at 1.54mm due to its $^4I_{13/2}\;{\rightarrow}\;^4I_{15/2}$ intra-4f transition. As this corresponds to the low-loss window of silica-based optical fibers, Er-based light sources have become a mainstay of the long-distance telecom. In most telecom applications, $Er^{3+}$ ions are excited via resonant optical pumping. However, if nanocluster-Si (nc-Si) are co-doped with $Er^{3+}$, $Er^{3+}$ can be excited via energy transfer from excited electrical carriers in the nc-Si as well. This combines the broad, strong absorption band of nc-Si with narrow, stable emission spectra of $Er^{3+}$ to allow top-pumping with off-resonant, low-cost broadband light sources as well as electrical pumping. A widely used method to achieve nc-Si sensitization of $Er^{3+}$ is high-temperature annealing of Er-doped, non-stoichiometric amorphous thin film with excess Si (e.g.,silicon-rich silicon oxide(SRSO)) to precipitate nc-Si and optically activate $Er^{3+}$ at the same time. Unfortunately, such precipitation and growth of nc-Si into Er-doped oxide matrix can lead to $Er^{3+}$ clustering away from nc-Si at anneal temperatures much lower than ${\sim}1000^{\circ}C$ that is necessary for full optical activation of $Er^{3+}$ in $SiO_2$. Recently, silicon-rich silicon nitride (SRSN) was reported to be a promising alternative to SRSO that can overcome this problem of Er clustering. But as nc-Si formation and optical activation $Er^{3+}$ remain linked in Er-doped SRSN, it is not clear which mechanism is responsible for the observed improvement. In this paper, we report on investigating the effect of separating the nc-Si formation and $Er^{3+}$ activation by using hetero-multilayers that consist of nm-thin SRSO or SRSN sensitizing layers with Er-doped $SiO_2$ or $Si_3N_4$ luminescing layers.

  • PDF