• Title/Summary/Keyword: Co-fire

Search Result 941, Processing Time 0.021 seconds

Development of high-efficiency heating system using humidifying particles (가습 입자를 활용한 고효율 난방 시스템 개발)

  • Lee, Jeong-Won;Hong, Kyung-Bo
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2020
  • Products for heating indoors in low temperature and dry winter are largely divided into products using fossil fuels and products using electricity. The fossil fuels can warm the entire space by convection, but there is a high risk of fire and the frequent ventilation due to the increase in carbon monoxide and carbon dioxide. Heaters using electricity are mainly used because they are convenient to use and are cheap. However, these products can not efficiently warm the air because they use radiation energy. In other words, only the front part exposed to the heater is warm, and the rear part has no heating effect at all. Also, because it emits a large amount of light, fatigue of the eyes is very high. Another problem is that when using electric heaters, the room tends to be dry by high heat. Indoor humidity maintenance is a very important factor in the prevention and treatment of respiratory diseases. Especially, it is essential for health care for infants, bronchial organs and people with weak respiratory because humidity is low in winter. In this study, we conducted a study to develop a product that can improve heating efficiency while maintaining proper indoor humidity by combining heat energy and moisture particles. The concept of humidification and heating at the same time, moisture particles generated in the humidifier pass through the heater, include thermal energy, and the moisture particles with thermal energy are diffused into the space by forced convection, thereby warming the entire space. In addition, the heating time is shortened as the feeling temperature is increased with the high relative humidity, and this has the effect that the heating cost in winter is reduced.

Beam Scheduling and Task Design Method using TaP Algorithm at Multifunction Radar System (다기능 레이다 시스템에서 TaP(Time and Priority) 알고리즘을 이용한 빔 스케줄링 방안 및 Task 설계방법)

  • Cho, In-Cheol;Hyun, Jun-Seok;Yoo, Dong-Gil;Shon, Sung-Hwan;Cho, Won-Min;Song, Jun-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • In the past, radars have been classified into fire control radars, detection radars, tracking radars, and image acquisition radars according to the characteristics of the mission. However, multi-function radars perform various tasks within a single system, such as target detection, tracking, identification friend or foe, jammer detection and response. Therefore, efficient resource management is essential to operate multi-function radars with limited resources. In particular, the target threat for tracking the detected target and the method of selecting the tracking cycle based on this is an important issue. If focus on tracking a threat target, Radar can't efficiently manage the targets detected in other areas, and if you focus on detection, tracking performance may decrease. Therefore, effective scheduling is essential. In this paper, we propose the TaP (Time and Priority) algorithm, which is a multi-functional radar scheduling scheme, and a software design method to construct it.

The Development of Inspection Checklist for Risk Recognition to Prevent Accidents at Worksites (작업현장 사고예방을 위한 위험인지 점검체크리스트 개발)

  • Lim, Hyung-Duk;Kawshalya, Mailan Arachchige Don Rajitha;Kim, Sang-Hoon;Oh, Young-Chan;Lee, Ho-Yong;Nam, Ki-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.811-816
    • /
    • 2022
  • Even though continuous management and supervision of reinforcement of policies to safeguard accidents at workplace and work sites were implemented. Accident prevention activities such as inspection and diagnosis are urgently required to induce a preliminary investigation to identify the risk factors for each type of work, before the work task to eliminate risks at the worksites. Since safety inspections at work sites were generally conducted through visual inspections, the results of safety inspections may vary depending on the findings and proficiency of the safety officers. The results of those inspections may have loopholes to prevent potential accidents at work. Therefore, the purpose of this study was to develop a risk identification checklist that can effectively perform safety inspections to prevent accidents at work sites. This study initially analyzed the previously developed accident checklist to identify current complications and issues in safety checklists. Based on the findings of major industrial accidents over the past three years, the relationship between accident, workplace, and work type were analyzed refereeing the safety inspection standards. A risk recognition-checklist was developed to provide basic data on identifying risk factors, and inspection guidance at work sites. To prepare for potential accidents by identifying and taking countermeasures to mitigate the high risk and serious accidents at sites by the guidelines of the checklist. The developed inspection checklist has been practically used by experts at work sites to perform safety inspections, and it has been verified its suitability, and feasibility, to prevent or mitigate workplace accidents, including securing the safety and health of field workers. The role of the developed safety checklist has been considered effective at worksites.

Structural Stability Evaluation of Eco-Friendly Prefabricated Rainwater Infiltration Type Detention Facility with Red Clay Water-Permeable Block Body (황토투수블록체를 적용한 친환경 조립식 빗물 침투형 저류시설의 구조 안정성 평가)

  • Choi, Hyeonggil;Lee, Taegyu;Kim, Hojin;Choi, Heeyong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, due to the frequent occurrence of localized torrential rains and heat waves caused by abnormal climates. For this reason, it is necessary to develop an economical and eco-friendly rainwater detention facility that can secure the groundwater level through rainwater detention as well as flood prevention against concentrated rainfall by simultaneously implementing rainwater permeation and storage. In this study, the structural safety of an eco-friendly rainwater infiltration type detention facility made using eco-friendly inorganic binders including red clay was examined. Static analysis considering the constant load and additional vertical load and dynamic analysis considering the seismic spectrum were performed. As a result, it was found that the eco-friendly prefabricated rainwater infiltration type detention facility developed in this study has a maximum stress of about 68.1% to 75.4% and a maximum displacement of about 0.9% to 9.6% under the same load and seismic conditions compared to the existing PE block rainwater detention facility. It was confirmed that the eco-friendly prefabricated rainwater infiltration type detention facility secured excellent structural stability.

Seismic Stability Evaluation of Sand Ground with Organic Soil by Using Shaking Table Test (진동대 시험을 이용한 유기질토가 협재된 모래지반의 내진 안정성 평가)

  • Yongjin Chung;Youngchul Baek;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.13-20
    • /
    • 2023
  • The Gangneung region has an environment suitable for the formation of organic soil, and there is an alluvial layer in which sedimentary sand layers are distributed on the upper and lower parts of the organic soil. In order to evaluate the seismic safety of the railway roadbed passing through the Gangneung area, a railway roadbed and ground model considering the similarity ratio was fabricated, a shaking table test was conducted, and the seismic stability was evaluated by comparing the effective stress analysis results. The applied seismic waves were artificial seismic waves, Gyeongju seismic waves, Borah seismic waves, Nahanni seismic waves, and Tabas seismic waves. It became. Due to the ground reinforcement effect by jet grouting applied to the lower ground of the new roadbed, the displacement of the new roadbed was found to be reduced from a minimum of 33.7% to a maximum of 56.7% compared to the existing roadbed. The shaking table test results were verified by effective stress analysis using the Finn model of the Flac program, and showed a similar trend to the shaking table test values.

A Study on the prediction of SOH estimation of waste lithium-ion batteries based on SVM model (서포트 벡터 머신 기반 폐리튬이온전지의 건전성(SOH)추정 예측에 관한 연구)

  • KIM SANGBUM;KIM KYUHA;LEE SANGHYUN
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.727-730
    • /
    • 2023
  • The operation of electric automatic windows is used in harsh environments, and the energy density decreases as charging and discharging are repeated, and as soundness deteriorates due to damage to the internal separator, the vehicle's mileage decreases and the charging speed slows down, so about 5 to 10 Batteries that have been used for about a year are classified as waste batteries, and for this reason, as the risk of battery fire and explosion increases, it is essential to diagnose batteries and estimate SOH. Estimation of current battery SOH is a very important content, and it evaluates the state of the battery by measuring the time, temperature, and voltage required while repeatedly charging and discharging the battery. There are disadvantages. In this paper, measurement of discharge capacity (C-rate) using a waste battery of a Tesla car in order to predict SOH estimation of a lithium-ion battery. A Support Vector Machine (SVM), one of the machine models, was applied using the data measured from the waste battery.

Effect of Ambient Air Pollution on Years of Life Lost from Deaths due to Injury in Seoul, South Korea (대기오염물질이 손상으로 인한 손실수명연수에 미치는 영향: 서울특별시를 중심으로)

  • Sun-Woo Kang;Subin Jeong;Hyewon Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.3
    • /
    • pp.149-158
    • /
    • 2023
  • Background: Injury is one of the major health problems in South Korea. Few studies have evaluated both intentional and unintentional injury when investigating the association between exposure to air pollutants and injury. Objectives: We aimed to explore the association between short-term exposure to ambient air pollution and years of life lost (YLLs) due to injury. Methods: Data on daily YLLs for 2002~2019 were obtained from the the Death Statistics Database of the Korean National Statistical Office. This study estimated short-term exposure to particulate matter with an aerodynamic diameter of <10 ㎛ (PM10), particulate matter with an aerodynamic diameter of <2.5 ㎛ (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). This time series study was conducted using a generalized additive model (GAM) assuming a Gaussian distribution. We also evaluated a delayed effect of ambient air pollution by constructing a lag structure up to seven days. The best-fitting lag was selected based on smallest generalized cross validation (GCV) value. To explore effect modification by intentionality of injury (i.e., intentional injury [self-harm, assault] and unintentional injury), we conducted stratified subgroup analyses. Additionally, we stratified unintentional injury by mechanism (traffic accident, fall, etc.). Results: During the study period, the average daily YLLs due to injury was 307.5 years. In the intentional injury, YLLs due to self-harm and assault showed positive association with air pollutants. In the unintentional injury, YLLs due to fall, electric current, fire and poisoning showed positive association with air pollutants, whereas YLLs due to traffic accident, mechanical force and drowning/submersion showed negative associations with air pollutants. Conclusions: Injury is recognized as preventable, and effective strategies to create a safe society are important. Therefore, we need to establish strategies to prevent injury and consider air pollutants in this regard.

A Study on the Improvement of Selection Method of Safety Distance for Worker in Hydrogen Refueling Station (수소 충전 시설 내 근로자를 위한 안전거리 선정 방법 개선에 관한 연구)

  • Hyo-Ryeol Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.78-84
    • /
    • 2023
  • Recently, the world's countries are tightening regulations on CO2 and air pollutants emission to solve them. In addition, eco friendly vehicles is increasing to replace automobiles in internal combustion engine. The government is supporting the expansion of hydrogen refueling infrastructure according to the hydrogen economy road map. In particular, refueling station is important to secure the safety that supplies high-pressure hydrogen with a wide LFL range. This paper is on guidelines for the determination safety distances to ensure worker safety from accident as jet fire. The safety distance is set according to the procedure of the EIGA doc 075/21. For accident frequency is upper 3.5E-05 per annum, safety distance is decided via consequence analysis where the risk of harm is below individual harm exposure threshold.

A Study on the Application Review of Hwang-toh for Ground Grouting Based on Smart Construction (스마트건설기반에서의 지반그라우팅을 위한 황토의 적용성 검토)

  • Taese Lee;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.21-27
    • /
    • 2024
  • Limestone-based cement has been well utilized as a construction material throughout the world, but as civil and architectural development accelerates, limestone will gradually be depleted. The use of cement, the main material for civil engineering and construction, is rapidly increasing in modern times, and the depletion of high-quality limestone resources will be greater than expected in the future. Therefore, if existing resources can be used as construction materials to replace cement based on accumulated technology, the depleting limestone resources can be utilized for a longer period of time. In order to determine whether Hwang-toh, which forms about 10% of the surface layer of Korea's terrain, can be partially utilized as a construction material, this study aims to develop a Hwang-toh accelerator agent and prove whether it can be applied to the field through indoor tests.

Development of Flooding and Overflow Simulation Technology for Rainwater Infiltration Storage Block Placement (빗물침투저류블록 설치 최적지 선정을 위한 침수범람 시뮬레이션 기술 개발)

  • Kim, Seongpyo;Ryu, Jungrim;Kim, Hojin;Choi, Heeyong;Lee, Taegyu;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.227-238
    • /
    • 2024
  • This study addresses the escalating flood damages prompted by recent climate shifts characterized by extreme weather events and proposes rainwater infiltration blocks as a potential solution. Recognizing the limitations inherent in existing inundation simulation methods, we advocate for the integration of novel functionalities, particularly leveraging drone technology. Our research endeavors encompass experimental assessments of inundation and flooding simulation technologies. These evaluations are conducted within areas where rainwater infiltration storage blocks have been implemented, juxtaposed against existing programs utilizing Digital Elevation Models(DEM) and Digital Surface Models(DSM). Through this comparative analysis and a meticulous scrutiny of the adaptability of inundation and flooding simulation to real-world deployment scenarios, we ascertain the efficacy of the simulation program as a decision-making tool for identifying optimal sites for rainwater infiltration storage block installation.