• Title/Summary/Keyword: Co-exposure

Search Result 997, Processing Time 0.033 seconds

Morphology-dependent Nanocatalysis: Rod-shaped Oxides

  • Shen, Wenjie
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.130-131
    • /
    • 2013
  • Nanostructured oxides are widely used in heterogeneous catalysis where their catalytic properties are closely associated with the size and morphology at nanometer level. The effect of particle size has been well decumented in the past two decades, but the shape of the nanoparticles has rarely been concerned. Here we illustrate that the redox and acidic-basic properties of oxides are largely dependent on their shapes by taking $Co_3O_4$, $Fe_2O_3$, $CeO_2$ and $La_2O_3$ nanorods as typical examples. The catalytic activities of these rod-shaped oxides are mainly governed by the nature of the exposed crystal planes. For instance, the predominant presence of {110} planes which are rich in active $Co^{3+}$ on $Co_3O_4$ nanorods led to a much higher activity for CO oxidation than the nanoparticles that mainly exposed the {111} planes. The simultaneous exposure of iron and oxygen ions on the surface of $Fe_2O_3$ nanorods have significantly enhanced the adsorption and activation of NO and thereby promoted the efficiency of DeNOx process. Moreover, the exposed surface planes of these rod-shaped oxides mediated the reaction performance of the integrated metal-oxide catalysts. Au/$CeO_2$ catalysts exhibited outstanding stability under water-gas shift conditions owing to the strong bonding of gold particle on the $CeO_2$ nanorods where the formed gold-ceria interface was resistant towards sintering. Cu nanoparticles dispersed on $La_2O_3$ nanorods efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols based on the uniue role of the exposed {110} planes on the support. Morphology control at nanometer level allows preferential exposure of the catalytically active sites, providing a new stragegy for the design of highly efficient nanostructured catalysts.

  • PDF

A Study on Desorption Efficiency of PAHs according to Desorption Solvents by HPLC with Sonication Extraction (탈착용매에 따른 PAHs 흡착매체의 탈착효율 평가 연구)

  • Hong, Jwa-ryung;Lee, Ji-eun;Jung, Myung-Koo;Choi, Kwang-min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.307-316
    • /
    • 2016
  • Objectives: In general, NIOSH method 5506 is most widely used for the occupational exposure measurement of PAHs, but 2-4 ring PAHs have poor desorption efficiency, especially for a filter. The purpose of this study was to determine a method to increase the desorption efficiency of 16-PAHs using an ultrasonic extraction procedure. Methods: Test samples prepared spiked XAD-2 tubes and PTFE filters in the range of $0.01-1.0{\mu}g/mL$ for desorption efficiency study. Four different extraction solvents, acetonitrile, acetone, tetrahydrofuran and dichloromethane, were tested in order to select the most suitable solvent for the extraction of the 16 PAHs. The addition of dimethyl sulfoxide and sonication time were considered in order to determine the method with the highest extraction efficiency. All samples were made in three sets and analysis was replicated seven times by HPLC. Results: Acetonitrile and acetone were the optimized as an extraction solvent and desorption efficiency of 2-ring PAHs such as naphthalene, acenaphthylene were increased 3~19% with dimethyl sulfoxide for XAD-2. Acetone was the best extraction solvent for PTFE filter and the desorption efficiency was increased 3~13% for 2- to 4-ring PAHs. The optimum sonication time was 60 minutes and desorption efficiency increased with extraction time. Conclusions: As a result, the best extraction solvent was acetone with dimethyl sulfoxide for ultrasonic extraction procedure and the desorption efficiency of this method was better than NIOSH 5506's. This study could be applied as a method for occupational exposure measurement of PAHs.

A Study on the X-ray Image Reading of Radiological Dispersal Device (방사능 폭발물의 X-ray 영상판독에 관한 연구)

  • Geun-Woo Jeong;Kyong-Jin Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.437-443
    • /
    • 2024
  • The purpose of radiological Dispersal Device(RDD) is to kill people by explosives and to cause radiation exposure by dispersing radioactive materials. And It is a form of explosive that combines radioactive materials such as Co-60 and Ir-192 with improvised explosives. In this study, we tested and evaluated whether it was possible to read the internal structure of an explosive using X-rays in a radioactive explosive situation. The improvised explosive device was manufactured using 2 lb of model TNT explosives, one practice detonator, one 9V battery, and a timer switch in a leather briefcase measuring 41×35×10 cm3. The radioactive material used was the Co-60 source used in the low-level gamma ray irradiation device operated at the Advanced Radiation Research Institute of the Korea Atomic Energy Research Institute. The radiation dose used was gamma ray energy of 1.17 MeV and 1.33 MeV from a Co-60 source of 2208 Ci. The dose rates are divided into 0.5, 1, 2, and 4 Gy/h, and the exposure time was divided into 1, 3, 5, and 10 minutes. Co-60 source was mixed with the manufactured explosive and X-ray image reading was performed. As a result of the experiment, the X-ray image appeared black in all conditions divided by dose rate and time, and it was impossible to confirm the internal structure of the explosive. This is because γ-rays emitted from radioactive explosives have higher energy and stronger penetrating power than X-rays, so it is believed that imaging using X-rays is limited By blackening the film. The results of this study are expected to be used as basic data for research and development of X-ray imaging that can read the internal structure of explosives in radioactive explosive situations.

Studies on Application of Sterilization Method Using Ultra Violet Radiation for Liquid Preparations (자외선살균법(紫外線殺菌法)의 액제(液劑)에 대(對)한 응용(應用)의 검토(檢討))

  • Kim, Yong-Bae;Lee, Sang-Hee;Kim, Geon-Chee;Kang, Gun-Il
    • Journal of Pharmaceutical Investigation
    • /
    • v.2 no.1
    • /
    • pp.58-62
    • /
    • 1972
  • The stabillities of taurine, niacinamide, and pyridoxine hydrochloride under exposure to ultra violet radiation in liquid preparations were studied. And sterilization effects for E. coli in both water and liquid preparations were also comparatively evaluated. The above mentioned organic compounds were stable under this experimental conditions and viable count of E. coli reveals that organic compounds dissolved in solution display protective action for microorganisms under UV-irradiation.

  • PDF

Co-firing Optimization of Crystalline Silicon Solar Cell Using Rapid Thermal Process (급속 열처리 공정을 이용한 결정질 실리콘 태양전지의 전극 소결 최적화)

  • Oh, Byoung-Jin;Yeo, In-Hwan;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.236-240
    • /
    • 2012
  • Limiting thermal exposure time using rapid thermal processing(RTP) has emerged as promising simplified process for manufacturing of solar cell in a continuous way. This paper reports the simplification of co-firing using RTP. Actual temperature profile for co-firing after screen printing is a key issue for high-quality metal-semiconductor contact. The plateau time during the firing process were varied at $450^{\circ}C$ for 10~16 sec. Glass frit in Ag paste etch anti-reflection layer with plateau time. Glass frit in Ag paste is important for the Ag/Si contact formation and performances of crystalline Si solar cell. We achieved 17.14% efficiency with optimum conditions.

Field Test Facilities for Composite Long Rod Insulator (고분자(高分子) 장간애자용(長幹碍子用) 옥외(屋外)시험장(試驗場) 구축(構築))

  • Hahn, Key-Man;Kim, Dong-Wook;Kwon, Hyuk-Sam;Yoo, Sung-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1499-1501
    • /
    • 1994
  • This paper studies on the outdoor field test facilities which are established for weather-resist and mechanical-resist property teat of composite insulator. We have established measuring and data acquisition system for various test conditions -leakage current, temperature, humidity, wind direction, wind velocity and rainfall. The merry-go-round test and salt fog test have been studied in order to evaluate non tracking property of rubber material. Especially we have checked the relationship between hydrophobicity and outdoor exposure degree by contact angle measurement.

  • PDF

Sensitivity Improvement Method for Color Capture Device At Low Illumination Conditions (Color Capture Device의 저조도 감도 향상 방안)

  • Kim, Il-Do;Jun, Jae-Sung;Choi, Byung-Sun;Park, Sahng-Gyu
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.235-236
    • /
    • 2007
  • CCD(Charge-Coupled Device) 혹은 CMOS (Complementary Metal Oxide Semiconductor)와 같은 소자를 이용하여 빛을 전기적 신호인 Image로 재구성하는 촬상소자(Color Capture Device)는 촬영환경이 어두워지면 Dynamic Range가 작아지고, Noise가 상대적으로 심해진다[1][2]. 본 논문에서는 촬영 환경이 어두울 때, Resolution을 Preserving하는 Pixel Pitch가 큰 촬상 소자와 Motion Blur를 억제하는 Exposure Time이 긴 촬상 소자의 조합을 신호처리로 구현하여, 신호의 Power를 향상시켜 Dynamic Range를 키우고 Noise의 Boost-up을 억제하여 SNR(Signal to Noise Ratio)을 향상시키는 방식으로, 촬상 장치의 감도를 향상시켜 화질을 개선하는 방법을 제안한다.

  • PDF

The Study on Measurement of Relative Conversion Factor in X-ray Image Intensifier (X선영상증배관의 상대변환계수 측정에 관한 검토)

  • Kim, Sung-Chul;Shin, Sung-Ill;Lee, Sun-Sook;Huh, Joon;Kim, Sung-Soo
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.28-33
    • /
    • 1997
  • For the Evaluation of X-ray image intensifier, we measured radiation dose at input of I. I., brightness and fluorescence at output of I. I. by using X-ray exposure meter, optometer and fluorescence meter for the relative conversion factor. Especially, by using fluorescence meter, we could easily get relative conversion factor without having regulated machine by JIS. Since using, the quality of image intensifier is going down. Consequently, it needs continuous quality maintenance.

  • PDF

FT-IR Studies of Molybdena Supported on Titania

  • Kim, Kwan;Lee,, Soon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 1991
  • Fourier transform infrared spectroscopy has been applied to the characterization of titania supported molybdena. The equilibrium adsorption method seemed to produce molybdena species homogeneously dispersed on the support. Even under an oxidizing environment, molybdena species appeared to be able to possess coordinatively unsaturated $Mo^{5+}$ ions owing to the natures of TiO$_2$, i.e. oxygen deficiency and permeability toward oxygen diffusion. At the initial stage of reduction, the terminal double bond oxygen ( Mo=O ) seemed to be removed, generating presumably $Mo^{4+}$. The carbonyl bands at 2198 and 2190 $cm^{-1}$ observed after CO exposure were attributed to the $Mo^{5+}{\cdots}CO\;and\;Mo^{4+}\;{\cdots}CO$ complexes, respectively, while the band pair at 2136 and 2076 $cm^{-1}$ to $Mo^{4+}(CO)_2$.

Coadsorptions of Carbon Monoxide and Oxygen on Polycrystalline Nickel Surface (다결정 니켈 표면에서의 CO 와 $O_2$의 공동흡착)

  • Soon Bo Lee;Jin Hyo Boo;Woo Sub Kim;Woon Sun Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1019-1024
    • /
    • 1993
  • The coadsorption of carbon monoxide and oxygen on polycrystalline nickel surface has been studied using XPS at the room temperaure. The adsorption of CO on the nickel surface precovered partially with oxygen is found to take place by the following steps: The CO molecules react with the preadsorbed oxygen atoms to liberate $CO_2$ gas at the initial stage of low CO exposures, and they are coadsorbed gradually with the increasing CO exposures. The extent of coadsorption at the higher CO exposures is found to decrease with the increasing degree of oxygen preadsorption. This finding is explained in terms of the reduced adsorption site for CO as a consequence of oxygen preadsorption. The CO molecules preadsorbed on the nickel surface inhibited the adsorption of $O_2$ molecules. The increase of oxygen exposure led to the dissociation of preadsorbed CO, and the NiO layers were formed concurrently. The dissociation was rendered to arise from an oxygen-to-CO energy transfer.

  • PDF