• Title/Summary/Keyword: Co-conversion

Search Result 1,496, Processing Time 0.03 seconds

Conversion Efficiency of Catalyst for Lean-bum Natural Gas Vehicles with Steady and Unsteady State Temperature Change (정상 및 비정상 온도변화에 따른 린번 천연가스 자동차용 촉매의 정화성능)

  • Cho Byung-Chul;Juhng Woo-Nam;Piao Fengai;Lee Choon-Hee;Lee Jang-Hee;Yun Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.123-130
    • /
    • 2005
  • In this study, we evaluated the CH4 and CO conversion efficiencies over the oxidation catalysts for natural gas vehicle with lean-burn system. On the fresh catalyst, the conversion efficiency was increased when the loading of precious metal was increased. On the aged catalyst, the conversion efficiency was decreased as increasing the excess air ratio. We could confirm the measuring conversion efficiency of the unsteady state with the FTIR and that of steady state with the GC The temperature increasing ratio of unsteady state is acceptable from 3$^{\circ}C$/min. to 15$^{\circ}C$/min. for the evaluation of catalyst conversion performance , which has within the 4$\%$ of the difference of conversion efficiency. We observed a physical behavior of the thermal aged catalyst's surface using TEM and BET device. It was found that the precious metal was grown to the micro-scopic size by thermal aging process.

Catalytic Oxidation of Ammonia over Metal Supported on Alumina at Low Temperature (금속담지 활성알루미나 촉매의 암모니아 저온연소반응)

  • Lim, Yun-Hui;Lee, Ji-Yeol;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.371-379
    • /
    • 2013
  • In order to improve the selective oxidation reaction of gaseous ammonia at a low temperature, various types of metal-impregnated activated alumina were prepared, and also physical and chemical properties of the conversion of ammonia were determined. Both types of metal (Cu, Ag) impregnated activated alumina show high conversion rate of ammonia at high temperature (over $300^{\circ}C$). However, at lower temperature ($200^{\circ}C$), Ag-impregnated catalyst shows the highest conversion rate (93%). In addition, the effects of lattice oxygen of the developed catalyst was studied. Ce-impregnated catalyst showed higher conversion rate than commercial alumina, but also showed lower conversion rate than Ag-impregnated sample. Moreover, 5 vol.% of Ag activation under hydrogen shows the highest conversion rate result. Finally, through high conversion at low temperature, it was considered that the production of NO and $NO_2$, toxic by-products, were effectively inhibited.

Voltage Clamped Tapped-Inductor Boost Converter with High Voltage Conversion Ratio (고승압비를 갖는 전압 클램프 탭인덕터 부스트 컨버터)

  • Kang, Jung-Min;Lee, Sang-Hyun;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • In this paper, voltage clamped tapped-inductor boost converter with high voltage conversion ratio is proposed. The conventional tapped-inductor boost converter has a serious drawback such as high voltage stresses across all power semiconductors due to the high resonant voltage caused by the leakage inductor of tapped inductor. Therefore, the dissipative snubber is essential for absorbing this resonant voltage, which could degrade the overall power conversion efficiency. To overcome these drawbacks, the proposed converter employs a voltage clamping capacitor instead of the dissipative snubber. Therefore, the voltage stresses of all power semiconductors are not only clamped as the output voltage but the power conversion efficiency can also be considerably improved. Moreover, since the energy stored in the clamp capacitor is transferred to the output side together with the input energy, the proposed converter can achieve the higher voltage conversion ratio than the conventional tapped-inductor boost converter. Therefore, the proposed converter is expected to be well suited to various applications demanding the high efficiency and high voltage conversion ratio. To confirm the validity of the proposed circuit, the theoretical analysis and experimental results of the proposed converter are presented.

Integrated Operation of Power Conversion Module for DC Distribution System (직류 배전 시스템을 위한 전력 변환 모듈의 통합 운전)

  • Lee, Hee-Jun;Shin, Soo-Choel;Hong, Suk-Jin;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.240-248
    • /
    • 2014
  • It is DC power that Output of renewable energy being recently developed and researched. Also, demand of DC power will expect to proliferate due to increase of digital load. Thus, DC distribution system providing high quality of power and reliability has emerged as a new distribution system. If the conventional distribution systems are substituted by proposed DC distribution system, the output of renewable energy can be connected with distribution systems under minimum power conversion. Therefore, in the event of connection with DC load, it can construct an efficient distribution system. In this paper, the integrated parallel operation of power conversion module for DC distribution system is proposed. Also, this paper proposed modularization of power conversion devices for DC distribution system and power control for parallel operation of large capacity system. DC distribution system consists of three power conversion modules such as AC/DC power conversion module 2 set, ESS module 1 set. DC distribution system controls suitable operation depending on the status of the DC power distribution system and load. Integrated operation of these systems is verified by simulation and experiment results.

CO oxidation Reaction over copper metal oxide catalysts (구리복합산화물 촉매상에서 일산화탄소의 산화반응)

  • Lee, Hak Beum;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.129-135
    • /
    • 2016
  • CO oxidation was performed with Cu-Mn and Cu-Zn co-precipitated catalysts as differential precipitant, metal ratio and calcination temperature. The effects of differential metal mole ratio and calcination temperature in mixed metal oxide catalyst were investigated with CO oxidation reaction. Physiochemical properties were studied by XRD, $N_2$ sorption and SEM. 2Cu-1Mn with $Na_2CO_3$ catalyst calcined at $270^{\circ}C$ has a large surface area $43m^2/g$ and the best activity for CO oxidation. $Cu_{0.5}Mn_{2.5}O_4$ in XRD peak shows the lower activity than others. The catalytic activity over the catalyst calcined $270^{\circ}C$ displayed the highest conversion, and it was better activity comparing with Pt catalysts CO conversion.

High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent

  • Choi, Kwang-Hyun;Lee, Kug-Seung;Jeon, Tae-Yeol;Park, Hee-Young;Jung, Nam-Gee;Chung, Young-Hoon;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • Alloying degree is an important structural factor of PtRu catalysts for direct methanol fuel cells (DMFC). In this work, carbon supported PtRu catalysts were synthesized by reduction method using anhydrous ethanol as a solvent and $NaBH_4$ as a reducing agent. Using anhydrous ethanol as a solvent resulted in high alloying degree and good dispersion. The morphological structure and crystallanity of synthesized catalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM). CO stripping and methanol oxidation reaction were measured. Due to high alloying degree catalyst prepared in anhydrous ethanol, exhibited low onset potential for methanol oxidation and negative peak shift of CO oxidation than commercial sample. Consequently, samples, applying ethanol as a solvent, exhibited not only enhanced CO oxidation, but also increased methanol oxidation reaction (MOR) activity compared with commercial PtRu/C (40 wt%, E-tek) and 40 wt% PtRu/C prepared in water solution.

Emission Characteristics of a Gas Fueled Sl Engine under Lean Burn Conditions (가스연료엔진의 희박영역에서의 배출가스특성에 관한 연구)

  • 김창업;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.93-100
    • /
    • 2002
  • For natural gas and LPG fuel, measurements on the concentrations of individual exhaust hydrocarbon species have been made as a function of air-fuel ratio in a 2-liter four-cylinder engine using a gas chromatography. NMHC in addition to the species of HC, other emissions such as CO$_2$, CO and NOx were examined for natural gas and LPG at 1800rpm far two compression ratios (8.6 and 10.6). Fuel conversion efficiencies were also investigated together with emissions to study the effect of engine parameters on the combustion performances in gas engines especially under the lean bum conditions. It was found that CO$_2$ emission decreased with smaller C value of fuel, leaner mixture strength and the higher compression ratio. HC emissions from LPG engine consisted primarily of propane (larger 60%), ethylene and propylene, while main emissions from natural gas were mothane (larger than 60%), ethane, ethylene and propane on the average. The natural gas was proved to give the less ozone formation than LPG fuel. This was accomplished by reducing the emissions of propylene, which has relatively high MIR factor, and propane that originally has large portion of LPG. In addition, natural gas shows a benefit in other emissions (i.e. NMHC,NOx, CO$_2$and CO), SR and BSR values except fuel conversion efficiency.

Natural Gas Combustion Characteristics of Mass Produced Oxygen Carrier Particles for Chemical-looping Combustor in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 매체순환식 가스연소기용 대량생산 산소공여입자들의 천연가스 연소특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Park, Yeong-Seong;Park, Moon-Hee
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.2
    • /
    • pp.151-160
    • /
    • 2009
  • Natural gas combustion characteristics of mass produced oxygen carrier particles were investigated in a batch type bubbling fluidized bed reactor. Five particles, NiO/bentonite, OCN601-650, OCN702-1100, OCN703-950, OCN703-1100 were used as oxygen carrier particles. Natural gas and air were used as reactants for reduction and oxidation, respectively. During reduction reaction, high fuel conversion and high $CO_2$ selectivity were achieved for most of oxygen carriers. During oxidation, NO emission was very low. These results indicate that inherent $CO_2$ separation and low NOx combustion are feasible for the natural gas fueled chemical-looping combustion system. Among the five oxygen carriers, OCN703-1100 particle was selected as the best candidate for demonstration of long-term operation in large-scale chemical-looping combustor from the viewpoints of fuel conversion, $CO_2$ selectivity, $CH_4$ concentration, and CO concentration.

Photoelectrochemical Water Oxidation and $CO_2$ Conversion for Artificial Photosynthesis

  • Park, Hyunwoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.70-70
    • /
    • 2013
  • As the costs of carbon-footprinetd fuels grow continuously and simultaneously atmospheric carbon dioxide concentration increases, solar fuels are receiving growing attention as alternative clean energy carriers. These fuels include molecular hydrogen and hydrogen peroxide produced from water, and hydrocarbons converted from carbon dioxide. For high efficiency solar fuel production, not only light absorbers (oxide semiconductors, Si, inorganic complexes, etc) should absorb most sunlight, but also charge separation and interfacial charge transfers need to occur efficiently. With this in mind, this talk will introduce the fundamentals of solar fuel production and artificial photosynthesis, and then discuss in detail on photoelectrochemical (PEC) water splitting and CO2 conversion. This talk largely divides into two section: PEC water oxidation and PEC CO2 reduction. The former is very important for proton-coupled electron transfer to CO2. For this oxidation, a variety of oxide semiconductors have been tested including TiO2, ZnO, WO3, BiVO4, and Fe2O3. Although they are essentially capable of oxidizing water into molecular oxygen, the efficiency is very low primarily because of high overpotentials and slow kinetics. This challenge has been overcome by coupling with oxygen evolving catalysts (OECs) and/or doping donor elements. In the latter, surface-modified p-Si electrodes are fabricated to absorb visible light and catalyze the CO2 reduction. For modification, metal nanoparticles are electrodeposited on the p-Si and their PEC performance is compared.

  • PDF

Effects of Temperature, Pressure, Gas Velocity, and Capacity on Reduction Characteristics of Mass Produced Particle in a 0.5 MWth Chemical Looping Combustion System (0.5 MWth 급 케미컬루핑 연소시스템에서 대량생산 산소전달입자의 환원반응 특성에 미치는 온도, 압력, 유속 및 용량의 영향)

  • RYU, HO-JUNG;LEE, DOYEON;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOOSEOB;BAEK, JEOM-IN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.53-62
    • /
    • 2021
  • Batch type reduction-oxidation tests were performed to check effects of temperature, pressure, gas velocity, and capacity on reduction characteristics of mass produced particle in a 0.5 MWth chemical looping combustion system. The fuel conversion and the CO2 selectivity increased as the temperature increased and as the gas velocity decreased. However the CO2 selectivity showed the maximum and decreased as the capacity increased because the CO emission increased. The results show that high temperature, low gas velocity and low inert gas concentration are preferable to ensure high reactivity of oxygen carrier in the fuel reactor.