• Title/Summary/Keyword: Co-58

Search Result 1,246, Processing Time 0.028 seconds

Analysis of Source Terms at Domestic Nuclear Power Plant with CZT Semiconductor Detector (CZT 반도체 검출기를 이용한 국내 원전 내 선원항 분석)

  • Kang, Seo Kon;Kang, Hwayoon;Lee, Byoung-Il;Kim, Jeong-In
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.14-20
    • /
    • 2014
  • A lot of radiation exposure for radiation workers who are engaged in Nuclear Power Plants, especially PWRs, have been caused during the outage by CRUD, such as $^{58}Co$, $^{60}Co$, in Reactor Coolant System. And therefore we need to know source terms to achieve optimization of protection for the radiation workers from radiation exposure at Nuclear Power Plants efficiently. This study analyzed source terms at domestic NPPs (PWRs) nearby Steam Generator with CZT semiconductor detector using by IN-VIVO method during the outage for the first time in the country. We checked difference for the detected source terms between old and new NPP. It was performed especially to see a change of source terms by water chemistry process as well. There was not any difference by water chemistry process both NPPs. The main source terms are $^{58}Co$ and $^{60}Co$ at all NPPs. $^{59}Fe$ only appears in the new NPP. $^{137}Cs$ and $^{95}Zr$ are shown in the old NPP. The fraction of $^{58}Co/^{60}Co$ in the new NPP is higher than the old NPP for increasing the specific activity of $^{60}Co$.

Synthesis of 58Ni Target and Co Diffused Rh Composite for Application of Mössbauer Source (뫼스바우어선원 적용을 위한 58Ni 표적체 및 Co가 확산된 Rh복합재 제조)

  • Uhm, Young Rang;Choi, Sang Mu;Kim, Jong-bum;Son, Kwang Jae
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.432-437
    • /
    • 2015
  • The en-riched $^{58}Ni$ powders are dissolved in acid solution and coated on a Cu target for proton irradiation at cyclotron to produce $^{57}Co$ radioisotope. The condition of the plating bath and the coating process are determined using the en-riched powders. To establish the coating conditions for $^{57}Co$, non-radioactive Co ions are dissolved in an acid solution and electroplated on to a rhodium plate. The thermal diffusion of electroplated Co into a rhodium matrix was studied to apply a $^{57}Co$ Mssbauer source. The diffusion depth from surface to matrix of Co is depended on the annealing temperature and time. The deposited Co atoms diffuse completely into a rhodium (Rh) matrix without substantial loss at an annealing temperature of 1200 for 4 hours.

Study on (n,p) reactions of 58,60,61,62,64Ni using new developed empirical formulas

  • Yigit, Mustafa
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.791-796
    • /
    • 2020
  • Nuclear fusion seems to be a good choice of energy source in the future. Nickel is one of the crucial structural materials for fusion devices. In this work, the cross section data of 58Ni(n,p)58Co, 60Ni(n,p)60Co, 61Ni(n,p)61Co, 62Ni(n,p)62Co and 64Ni(n,p)64Co reactions were calculated using the nuclear codes ALICE/ASH, EMPIRE 3.2 and TALYS 1.8. In addition, the cross sections were calculated with the empirical formulas obtained in our previous paper at 14-15 MeV. The obtained results were compared with the measured values in the literature, and with the evaluated data files (JEFF-3.3, TENDL-2017, ENDF/B-VIII.0).

Utilization of EPRI ChemWorks tools for PWR shutdown chemistry evolution modeling

  • Jinsoo Choi;Cho-Rong Kim;Yong-Sang Cho;Hyuk-chul Kwon;Kyu-Min Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3543-3548
    • /
    • 2023
  • Shutdown chemistry evolution is performed in nuclear power plants at each refueling outage (RFO) to establish safe conditions to open system and minimize inventory of corrosion products in the reactor coolant system (RCS). After hydrogen peroxide is added to RCS during shutdown chemistry evolution, corrosion products are released and are removed by filters and ion exchange resins in the chemical volume control system (CVCS). Shutdown chemistry evolution including RCS clean-up time to remove released corrosion products impacts the critical path schedule during RFOs. The estimation of clean-up time prior to RFO can provide more reliable actions for RCS clean-up operations and transients to operators during shutdown chemistry. Electric Power Research Institute (EPRI) shutdown calculator (SDC) enables to provide clean-up time by Co-58 peak activity through operational data from nuclear power plants (NPPs). In this study, we have investigated the results of EPRI SDC by shutdown chemistry data of Co-58 activity using NPP data from previous cycles and modeled the estimated clean-up time by EPRI SDC using average Co-58 activity of the NPP. We selected two RFO data from the NPP to evaluate EPRI SDC results using the purification time to reach to 1.3 mCi/cc of Co-58 after hydrogen peroxide addition. Comparing two RFO data, the similar purification time between actual and computed data by EPRI SDC, 0.92 and 1.74 h respectively, was observed with the deviation of 3.7-7.2%. As the modeling the estimated clean-up time, we calculated average Co-58 peak concentration for normal cycles after cycle 10 and applied two-sigma (2σ, 95.4%) for predicted Co-58 peak concentration as upper and lower values compared to the average data. For the verification of modeling, shutdown chemistry data for RFO 17 was used. Predicted RCS clean-up time with lower and upper values was between 21.05 and 27.58 h, and clean-up time for RFO 17 was 24.75 h, within the predicted time band. Therefore, our calculated modeling band was validated. This approach can be identified that the advantage of the modeling for clean-up time with SDC is that the primary prediction of shutdown chemistry plans can be performed more reliably during shutdown chemistry. This research can contribute to improving the efficiency and safety of shutdown chemistry evolution in nuclear power plants.