DOI QR코드

DOI QR Code

Study on (n,p) reactions of 58,60,61,62,64Ni using new developed empirical formulas

  • Yigit, Mustafa (Department of Physics, Faculty of Arts and Science, Aksaray University)
  • Received : 2018.09.20
  • Accepted : 2019.10.11
  • Published : 2020.04.25

Abstract

Nuclear fusion seems to be a good choice of energy source in the future. Nickel is one of the crucial structural materials for fusion devices. In this work, the cross section data of 58Ni(n,p)58Co, 60Ni(n,p)60Co, 61Ni(n,p)61Co, 62Ni(n,p)62Co and 64Ni(n,p)64Co reactions were calculated using the nuclear codes ALICE/ASH, EMPIRE 3.2 and TALYS 1.8. In addition, the cross sections were calculated with the empirical formulas obtained in our previous paper at 14-15 MeV. The obtained results were compared with the measured values in the literature, and with the evaluated data files (JEFF-3.3, TENDL-2017, ENDF/B-VIII.0).

Keywords

References

  1. M. Yigit, Nucl. Eng. Tech. 50 (2018) 411-415. https://doi.org/10.1016/j.net.2018.01.008
  2. M. Yigit, Appl. Radiat. Isot. 139 (2018) 151-158. https://doi.org/10.1016/j.apradiso.2018.05.008
  3. M. Yigit, E. Tel, Nucl. Sci. Tech. 28 (2017) 165. https://doi.org/10.1007/s41365-017-0316-6
  4. B. Pandey, K. Pandey, H.M. Agrawal, Ann. Nucl. Energy 38 (2011) 853-859. https://doi.org/10.1016/j.anucene.2010.11.011
  5. B. Lalremruata, S. Ganesan, V.N. Bhoraskar, et al., Ann. Nucl. Energy 36 (2009) 458-463. https://doi.org/10.1016/j.anucene.2008.11.030
  6. V.K. Mulik, H. Naik, S.V. Suryanarayana, et al., J. Radioanal. Nucl. Chem. 296 (2013) 1321. https://doi.org/10.1007/s10967-013-2419-9
  7. Z. Karimi, M. Sadeghi, A. Ezati, Nucl. Eng. Tech. 51 (2018) 269. https://doi.org/10.1016/j.net.2018.08.008
  8. M. Yigit, A. Kara, Nucl. Eng. Tech. 49 (2017) 996-1005. https://doi.org/10.1016/j.net.2017.03.006
  9. M.B. Challan, M. Fayez-Hassan, Indian J. Phys. 88 (2014) 505-512. https://doi.org/10.1007/s12648-013-0437-7
  10. M. Yigit, E. Tel, J. Fusion Energy 35 (2016) 585-590. https://doi.org/10.1007/s10894-016-0066-1
  11. M. Yigit, E. Tel, Nucl. Eng. Des. 280 (2014) 37-41. https://doi.org/10.1016/j.nucengdes.2014.09.018
  12. M. Yigit, Appl. Radiat. Isot. 105 (2015) 15-19. https://doi.org/10.1016/j.apradiso.2015.07.016
  13. R. Baldik, M. Yilmaz, Kerntechnik 83 (2018) 50-55. https://doi.org/10.3139/124.110846
  14. A. D'Arrigo, G. Giardina, M. Herman, et al., J. Phys. G 20 (1994) 365. https://doi.org/10.1088/0954-3899/20/2/015
  15. W. Dilg, W. Schantl, H. Vonach, et al., Nucl. Phys. A 217 (1973) 269. https://doi.org/10.1016/0375-9474(73)90196-6
  16. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Yadernaja Fizika 29 (1979) 875.
  17. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43 (1965) 1446. https://doi.org/10.1139/p65-139
  18. A.V. Ignatyuk, J.L. Weil, S. Raman, et al., Phys. Rev. C 47 (1993) 1504. https://doi.org/10.1103/PhysRevC.47.1504
  19. C.H.M. Broeders, A.Yu Konobeyev, Yu A. Korovin, et al., ALICE/ASH manual, FZK 7183, http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf, May 2006.
  20. M. Herman, R. Capote, M. Sin, et al., EMPIRE-3.2 Malta code manual. http://www.nndc.bnl.gov/empire/main.html, 2013.
  21. A.J. Koning, S. Hilaire, S. Goriely, Computer code TALYS, version 1.8, http://www.talys.eu.
  22. M. Yigit, Appl. Radiat. Isot. 135 (2018) 115-122. https://doi.org/10.1016/j.apradiso.2018.01.029
  23. J. Luo, F. Tuo, F. Zhou, X. Kong, Nucl. Instrum. Methods Phys. Res., Sect. B 266 (2008) 4862-4868. https://doi.org/10.1016/j.nimb.2008.07.029
  24. R. Doczi, V. Semkova, A.D. Majdeddin, et al., Indc(HUN)-032, NDS, IAEA (1997).
  25. V.N. Levkovskii, JETP Soviet Physics 18 (1964) 213-217.
  26. Experimental Nuclear Reaction Data (EXFOR), 2018. Available from: http://www.nndc.bnl.gov/exfor/exfor.htm.
  27. D.A. Brown, M.B. Chadwick, R. Capote, et al., Nucl. Data Sheets 148 (2018) 1-142. https://doi.org/10.1016/j.nds.2018.02.001
  28. P. Pereslavstev, A. Konobeyev, U. Fischer, JEFF-3.3. https://www.oecd-nea.org/dbdata/JEFF33/, 2017.
  29. A.J. Koning, D. Rochman, Nucl. Data Sheets 113 (2012) 2841. https://doi.org/10.1016/j.nds.2012.11.002
  30. M. Blann, H.K. Vonach, Phys. Rev. C 28 (1983) 1475-1492. https://doi.org/10.1103/PhysRevC.28.1475
  31. J.J. Griffin, Phys. Rev. Lett. 17 (1966) 478. https://doi.org/10.1103/PhysRevLett.17.478
  32. C.K. Cline, M. Blann, Nucl. Phys. A 172 (1971) 225. https://doi.org/10.1016/0375-9474(71)90713-5
  33. W. Hauser, H. Feshbach, Phys. Rev. C 87 (1952) 366-373. https://doi.org/10.1103/PhysRev.87.366
  34. A.A. Filatenkov, USSR Report to the I.N.D.C., 2016, 0460.
  35. W. Mannhart, D. Schmidt, Phys. Techn. Bundesanst., Neutronenphysik Reports (2007) 53.
  36. F. Zhou, X. Xiao, K. Fang, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 269 (2011) 642. https://doi.org/10.1016/j.nimb.2011.01.008
  37. V. Semkova, V. Avrigeanu, T. Glodariu, et al., Nucl. Phys. A 730 (2004) 255. https://doi.org/10.1016/j.nuclphysa.2003.11.005
  38. Y. Ikeda, C. Konno, K. Oishi, et al., JAERI Reports, No, 1988, p. 1312.
  39. A. Pavlik, G. Winkler, M. Uhl, et al., Nucl. Sci. Eng. 90 (1985) 186. https://doi.org/10.13182/NSE85-A17676
  40. A. Paulsen, R. Widera, Chemical Nucl. Data Conf., Canterbury, 1971, p. 129.
  41. Cs M. Buczko, J. Csikai, S. Sudar, et al., Phys. Rev. C 52 (1995) 1940. https://doi.org/10.1103/PhysRevC.52.1940
  42. J.F. Barry, J. Nuclear Energy A&B (Reactor Sci. and Technol.) 16 (1962) 467. https://doi.org/10.1016/0368-3230(62)90153-2
  43. S. Sudar, J. Csikai, S.M. Qaim, et al., Conf.on Nucl.Data for Sci.and Technol. (1991) 291. Juelich.
  44. C. Konno, Y. Ikeda, K. Oishi, et al., JAERI Reports, No, 1993, p. 1329.
  45. M. Wagner, H. Vonach, R.C. Haight, Conf. on Nucl. Data for Sci. and Technol. (1991) 358. Juelich.
  46. L.R. Greenwood, American Soc. of Testing and Materials Reports 956 (1987) 743.
  47. J.W. Meadows, D.L. Smith, L.R. Greenwood, et al., Ann. Nucl. Energy 23 (1996) 877. https://doi.org/10.1016/0306-4549(95)00068-2
  48. L. Tingyan, S. Zhaomin, L. Hanlin, et al., High Energy Phys. Nucl. Phys. 16 (1992) 151.
  49. K.T. Osman, F.I. Habbani, Sudanese Report to the I.N.D.C., 1996.
  50. R. Doczi, V. Semkova, A. Fenyvesi, et al., Nucl. Sci. Eng. 129 (1998) 164. https://doi.org/10.13182/NSE98-A1970
  51. M. Viennot, A.A. Haddou, A. Chiadli, et al., Conf. On Nucl. Data for Sci. and Technol., 1982, p. 406. Antwerp.
  52. N.I. Molla, R.U. Miah, M. Rahman, et al., Conf. on Nucl. Data for Sci. and Technol., Juelich (1991) 355.
  53. M. Belgaid, M. Siad, M. Allab, J. Radioanal. Nucl. Chem. 166 (1992) 493. https://doi.org/10.1007/BF02163532
  54. S.M. Qaim, R. Woelfle, M.M. Rahman, et al., Nucl. Sci. Eng. 88 (1984) 143. https://doi.org/10.13182/NSE84-A28398
  55. N.I. Molla, S.M. Qaim, Nucl. Phys. A 283 (1977) 269. https://doi.org/10.1016/0375-9474(77)90431-6
  56. W.G. Cross, R.L. Clarke, K. Morin, et al., Canadian report to EANDC 16 (1963) 1.
  57. A. Ercan, M.N. Erduran, M. Subasi, et al., Conf. on Nucl. Data for Sci. and Technol. (1991) 376. Juelich.
  58. I. Ribansky, J. Kristiak, L. Stoeva, Czech. J. Phys. B 35 (1985) 1128. https://doi.org/10.1007/BF01596429
  59. G.N. Maslov, F. Nasyrov, N.F. Pashkin, USSR Report to the I.N.D.C., 1974, p. 10.
  60. A.K. Valter, V.Yu Gonchar, I.I. Zalyubovskii, et al., Bull. Russian Academy of Sciences 26 (1963) 1086.
  61. I.L. Preiss, R.W. Fink, Nucl. Phys. 15 (1960) 326. https://doi.org/10.1016/0029-5582(60)90310-2

Cited by

  1. A new empirical formula for cross-sections of (n,n $ \alpha $ ) reactions vol.29, pp.8, 2020, https://doi.org/10.1142/s0218301320500627
  2. Production cross-section calculations of 111 In via proton and alpha-induced nuclear reactions vol.36, pp.8, 2020, https://doi.org/10.1142/s0217732321500516