• Title/Summary/Keyword: Co oxide thin film

Search Result 184, Processing Time 0.029 seconds

Properties of Sputtered Ga Doped ZnO Thin Film Under Various Reaction Gas Ratio (Reaction Gas 변화에 따라 스퍼터된 Ga Doped ZnO 박막의 특성)

  • Kim, Jong-Wook;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.289-293
    • /
    • 2013
  • We have studied structural, optical, and electrical properties of the Ga-doped ZnO (GZO) thin films being usable in transparent conducting oxides. The GZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of GZO for transparent conducting oxides, the Ar gas in sputtering process was varied as 40, 60, 80 and 100 sccm, respectively. As reaction gas decreased, the crystallinity of GZO thin film was increased, the optical bandgap of GZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in reaction gas. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with decreasing reaction gas. The structural, optical, and electrical properties of the GZO thin films were affected by Ga dopant content in GZO thin film.

Changes in the electrochemical properties of air-formed oxide film-covered AZ31 Mg alloy in aqueous solutions containing various anions

  • Fazal, Basit Raza;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.96.2-96.2
    • /
    • 2017
  • This research was conducted to investigate the electrochemical properties of the thin air-formed oxide film-covered AZ31 Mg alloy. In this work, native air-formed oxide films on AZ31 Mg alloy samples were prepared by knife-abrading method and the changes in the electrochemical properties of the air-formed oxide film were investigated in seven different electrolytes containing the following anions $Cl^-$, $F^-$, $SO{_4}^{2-}$, $NO_3{^-}$, $CH_3COO^-$, $CO{_3}^{2-}$ and $PO{_4}^{3-}$. It was observed from open circuit potential (OCP) transients that the potential initially decreased before gradually increasing again in the solutions containing only $CO{_3}^{2-}$ or $PO{_4}^{3-}$ ions, indicating the dissolution or transformation of the native air-formed oxide film into new more protective surface films. The Nyquist plots obtained from electrochemical impedance spectroscopy (EIS) showed that there was growth of new surface films with immersion time on the air-formed oxide film-covered specimens in all the electrolytes; the least resistive surface films were formed in fluoride and sulphate baths whereas the most protective film was formed in phosphate bath. The potentiodynamic polarization curves illustrated that passive behaviour of AZ31 Mg alloy under anodic polarization appears only in $CO{_3}^{2-}$ or $PO{_4}^{3-}$ ions containing solutions and at more than $-0.4V_{Ag/AgCl}$ in $F^-$ ion containing solution.

  • PDF

Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles

  • Ly, Tan Nhiem;Park, Sangkwon
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.417-428
    • /
    • 2018
  • In this study, we fabricated hierarchically self-assembled thin films composed of graphene oxide (GO) sheets and gold nanoparticles (Au NPs) using the Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques and investigated their gas-sensing performance. First, a thermally oxidized silicon wafer ($Si/SiO_2$) was hydrophobized by depositing the LB films of cadmium arachidate. Thin films of ligand-capped Au NPs and GO sheets of the appropriate size were then sequentially transferred onto the hydrophobic silicon wafer using the LB and the LS techniques, respectively. Several different films were prepared by varying the ligand type, film composition, and surface pressure of the spread monolayer at the air/water interface. Their structures were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their gas-sensing performance for $NH_3$ and $CO_2$ was assessed. The thin films of dodecanethiol-capped Au NPs and medium-sized GO sheets had a better hierarchical structure with higher uniformity and exhibited better gas-sensing performance.

Advances in Absorbers and Reflectors of Amorphous Silicon Oxide Thin Film Solar Cells for Tandem Devices (적층형 태양전지를 위한 비정질실리콘계 산화막 박막태양전지의 광흡수층 및 반사체 성능 향상 기술)

  • Kang, Dong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.115-118
    • /
    • 2017
  • Highly photosensitive and wide bandgap amorphous silicon oxide (a-$SiO_x$:H) films were developed at low temperature ranges ($100{\sim}150^{\circ}C$) with employing plasma-enhanced chemical vapor deposition by optimizing $H_2/SiH_4$ gas ratio and $CO_2$ flow. Photosensitivity more than $10^5$ and wide bandgap (1.81~1.85 eV) properties were used for making the a-$SiO_x$:H thin film solar cells, which exhibited a high open circuit voltage of 0.987 V at the substrate temperature of $100^{\circ}C$. In addition, a power conversion efficiency of 6.87% for the cell could be improved up to 7.77% by employing a new n-type nc-$SiO_x$:H/ZnO:Al/Ag triple back-reflector that offers better short circuit currents in the thin film photovoltaic devices.

Electrical Characteristics of Organic Ferroelectric Memory Devices Fabricated on Elastomeric Substrate (엘라스토머 기판 상에 제작한 유기 강유전체 메모리 소자의 전기적 특성)

  • Jung, Soon-Won;Ryu, Bong-Jo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.799-803
    • /
    • 2018
  • We demonstrated memory thin-film transistors (MTFTs) with organic ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) and an amorphous oxide semiconducting indium gallium zinc oxide channel on the elastomeric substrate. The dielectric constant for the P(VDF-TrFE) thin film prepared on the elastomeric substrate was calculated to be 10 at a high frequency of 1 MHz. The voltage-dependent capacitance variations showed typical butterfly-shaped hysteresis behaviors owing to the polarization reversal in the film. The carrier mobility and memory on/off ratio of the MTFTs showed $15cm^2V^{-1}s^{-1}$ and $10^6$, respectively. This result indicates that the P(VDF-TrFE) film prepared on the elastomeric substrate exhibits ferroelectric natures. The fabricated MTFTs exhibited sufficiently encouraging device characteristics even on the elastomeric substrate to realize mechanically stretchable nonvolatile memory devices.

Improvement in Adhesion of the Indium Zinc Oxide (IZO) Thin Films on Organic Polymer Films

  • Lee, Yeong-Beom;Kim, Kyong-Sub;Ko, Min-Jae;Kim, Kyung-Seop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.537-539
    • /
    • 2009
  • We report the improvement in adhesion of IZO thin films through oxygen ($O_2$) plasma treatment of organic polymer film. In conclusion, the $O_2$ plasma treatment of an organic polymer film was accomplished with improving ca. 1.8 times in adhesion than that of the only general etch treatment on the same organic polymer film.

  • PDF

A Study on Formation of Single-phase Film in the Bi-2212 Superconducting Thin Films Substrate Temperature and Oxide Gas Pressures (기판온도와 산화가스압에 따른 Bi-2212 초전도 박막의 단상막 형성에 관한 연구)

  • Yang, Seung-Ho;Lee, Hee-Kab;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.484-485
    • /
    • 2007
  • BiSrCaCuO superconducting thin films have been fabricated by co-deposition using the faraday cup. Despite setting the composition of thin film Bi2212, Bi(2201, 2212, 2223) phase were appeared. It was confirmed the obtained field of stabilizing phase was represented in the diagonal direction of the right below end in the Arrhenius plot of temperature of the substrate and $PO_3$, and it was distributed in the rezone.

  • PDF

Property of gallium doped Zinc Oxide thin film deposited with various substrate temperatures using D.C. magnetron sputtering

  • Kim, Se-Hyun;Moon, Yeon-Geon;Moon, Dae-Yong;Park, Jong-Wan;Jeong, Chang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1351-1354
    • /
    • 2006
  • In this paper, we study the effect of substrate temperature on property of Ga doped ZnO (GZO) thin film for transparent conductive oxide (TCO).GZO thin films have been deposited on corning glass 1737 by D.C. magnetron sputtering. We investigated the structural and electrical properties of GZO films using the X-Ray Diffractometer(XRD), Field Emission Scanning Electron Microscopy(FESEM) and 4-points probe .

  • PDF

Characteristics of Copper Vanadium Oxide$(Cu_{0.5}V_2O_5)$ Cathode for Thin Film Microbattery (구리-바나듐 산화물 박막의 양극 특성 및 전 고상 전지의 제작)

  • Lim Y. C.;Nam S. C.;Park H. Y.;Yoon Y. S.;Cho W. I.;CHo B. W.;Chun H. S.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.219-223
    • /
    • 2000
  • All-solid state lithium rechargeable thin film batteries were fabricated with the configuration of$Cu_{0.5}V_2O_5/Lipon/Li$ using sequential thin film techniques. Copper vanadium oxide thin films and Lipon thin films were prepared by DC reactive dual source magnetron sputtering and RF magnetron sputtering, respectively. According to XRD analysis, we found out that copper vanadium oxide thin films were amorphous. The electrochemical behaviour of them was examined in half cell system using EC : DMC(1:1 in IM $LiPF_5$) liquid electrolyte. The ionic conductivity of Lipon thin film was $1.02\times10^{-6}S/cm$ at $25^{\circ}C$ and $Cu_{0.5}V_2O_5/Lipon/Li$ cell showed that the discharge capacity was about $50{\mu}Ah/cm^2{\mu}m$ beyond 500cyc1es.

Zinc Oxide Wire-Like Thin Films as Nitrogen Monoxide Gas Sensor

  • Hung, Nguyen Le;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.358-363
    • /
    • 2015
  • We present an excellent detection for nitrogen monoxide (NO) gas using polycrystalline ZnO wire-like films synthesized via a simple method combined with sputtering of Zn metallic films and subsequent thermal oxidation of the sputtered Zn nanowire films in dry air. Structural and morphological characterization revealed that it would be possible to synthesize polycrystalline hexagonal wurtzite ZnO films of a wire-like nanostructure with widths of 100-150 nm and lengths of several microns by controlling the sputtering conditions. It was found from the gas sensing measurements that the ZnO wire-like thin film gas sensor showed a significantly high response, with a maximum value of 29.2 for 2 ppm NO at $200^{\circ}C$, as well as a reversible fast response to NO with a very low detection limit of 50 ppb. In addition, the ZnO wire-like thin film gas sensor also displayed an NO-selective sensing response for NO, $O_2$, $H_2$, $NH_3$, and CO gases. Our results illustrate that polycrystalline ZnO wire-like thin films are potential sensing materials for the fabrication of NO-sensitive high-performance gas sensors.