DOI QR코드

DOI QR Code

Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles

  • Ly, Tan Nhiem (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Sangkwon (Department of Chemical and Biochemical Engineering, Dongguk University)
  • Received : 2018.05.15
  • Accepted : 2018.07.15
  • Published : 2018.11.25

Abstract

In this study, we fabricated hierarchically self-assembled thin films composed of graphene oxide (GO) sheets and gold nanoparticles (Au NPs) using the Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques and investigated their gas-sensing performance. First, a thermally oxidized silicon wafer ($Si/SiO_2$) was hydrophobized by depositing the LB films of cadmium arachidate. Thin films of ligand-capped Au NPs and GO sheets of the appropriate size were then sequentially transferred onto the hydrophobic silicon wafer using the LB and the LS techniques, respectively. Several different films were prepared by varying the ligand type, film composition, and surface pressure of the spread monolayer at the air/water interface. Their structures were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their gas-sensing performance for $NH_3$ and $CO_2$ was assessed. The thin films of dodecanethiol-capped Au NPs and medium-sized GO sheets had a better hierarchical structure with higher uniformity and exhibited better gas-sensing performance.

Keywords

Acknowledgement

Supported by : Dongguk University

References

  1. K.D.G.I. Jayawardena, C. Opoku, J. Fryar, S.R.P. Silva, S.J. Henley, Appl. Surf. Sci. 257 (2011) 5274. https://doi.org/10.1016/j.apsusc.2010.11.009
  2. M. McCune, W. Zhang, Y. Deng, Nano Lett. 12 (2012) 3656. https://doi.org/10.1021/nl301407b
  3. S. Chen, G. Sun, ACS Appl. Mater. Interfaces 5 (2013) 6473. https://doi.org/10.1021/am402217s
  4. H. Yang, L. Hao, N. Zhao, C. Du, Y. Wang, CrystEngComm 15 (2013) 5760. https://doi.org/10.1039/c3ce40710a
  5. Y. Zhang, W. Zeng, Y. Li, J. Alloys Compd. 749 (2018) 355. https://doi.org/10.1016/j.jallcom.2018.03.307
  6. B. Timmer, W. Olthuis, A. van Den Berg, Sens. Actuators B 107 (2005) 666. https://doi.org/10.1016/j.snb.2004.11.054
  7. Y. Qin, X.D. Wang, Z.L. Wang, Nature 451 (2008) 809. https://doi.org/10.1038/nature06601
  8. A.N. Sokolov, B.C.-K. Tee, C.J. Bettinger, J.B.-H. Tok, Z. Bao, Acc. Chem. Res. 45 (2012) 361. https://doi.org/10.1021/ar2001233
  9. A. Kaniyoor, R.I. Jafri, T. Arockiadoss, S. Ramaprabhu, Nanoscale 1 (2009) 382. https://doi.org/10.1039/b9nr00015a
  10. H. Vedala, D.C. Sorescu, G.P. Kotchey, A. Star, Nano Lett. 11 (2011) 2342. https://doi.org/10.1021/nl2006438
  11. J. Yi, J.M. Lee, W.I. Park, Sens. Actuators B 155 (2011) 264. https://doi.org/10.1016/j.snb.2010.12.033
  12. L. Zhu, W. Zeng, Sens. Actuators A 267 (2017) 242. https://doi.org/10.1016/j.sna.2017.10.021
  13. D. Chen, H. Feng, J. Li, Chem. Rev. 112 (2012) 6027. https://doi.org/10.1021/cr300115g
  14. Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Trends Biotechnol. 29 (2011) 205. https://doi.org/10.1016/j.tibtech.2011.01.008
  15. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Nano Lett. 8 (2008) 3137. https://doi.org/10.1021/nl8013007
  16. S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, C. Fan, Adv. Funct. Mater. 20 (2010) 453. https://doi.org/10.1002/adfm.200901639
  17. I. Jung, D.A. Dikin, R.D. Piner, R.S. Ruoff, Nano Lett. 8 (2008) 4283. https://doi.org/10.1021/nl8019938
  18. M. Segev-Bar, H. Haick, ACS Nano 7 (2013) 8366. https://doi.org/10.1021/nn402728g
  19. T.N. Ly, S. Park, S.J. Park, Sens. Actuators B 237 (2016) 452. https://doi.org/10.1016/j.snb.2016.06.112
  20. N. Kahn, O. Lavie, M. Paz, Y. Segev, H. Haick, Nano Lett. 15 (2015) 7023. https://doi.org/10.1021/acs.nanolett.5b03052
  21. N. Olichwer, E.W. Leib, A.H. Halfar, A. Petrov, T. Vossmeyer, ACS Appl. Mater. Interfaces 4 (2012) 6151. https://doi.org/10.1021/am301780b
  22. S.K. Ghosh, T. Pal, Chem. Rev. 107 (2007) 4797. https://doi.org/10.1021/cr0680282
  23. L.A. Dykman, N.G. Khlebtsov, Acta Nature 3 (2011) 34. https://doi.org/10.32607/20758251-2011-3-2-34-56
  24. K. Ariga, Y. Yamauchi, T. Mori, J.P. Hill, Adv. Mater. 25 (2013) 6477. https://doi.org/10.1002/adma.201302283
  25. J. Huang, A.R. Tao, S. Connor, R. He, P. Yang, Nano Lett. 6 (2006) 524. https://doi.org/10.1021/nl060235u
  26. Z. Niel, A. Petukhoval, E. Kumacheva, Nat. Nanotechnol. 5 (2010) 25.
  27. R. Ghosh, A. Midya, S. Santra, S.K. Ray, P.K. Guha, ACS Appl. Mater. Interfaces 5 (2013) 7599. https://doi.org/10.1021/am4019109
  28. L.J. Cote, F. Kim, J. Huang, J. Am. Chem. Soc. 131 (2008) 1043.
  29. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 7 (1994) 801.
  30. S. Park, H.B. Lee, Colloid Polym. Sci. 290 (2012) 445. https://doi.org/10.1007/s00396-011-2553-2
  31. Y. Si, E.T. Samulski, Nano Lett. 8 (2008) 1679. https://doi.org/10.1021/nl080604h
  32. S.W. Bian, I.A. Mudunkotuwa, T. Rupasinghe, V.H. Grassian, Langmuir 27 (2011) 6059. https://doi.org/10.1021/la200570n
  33. J. Kim, F. Kim, J. Huang, Mater. Today 13 (2010) 28.
  34. S.H. Aboutalebi, M.M. Gudarzi, Q.B. Zheng, J. Kim, Adv. Funct. Mater. 21 (2011) 2978. https://doi.org/10.1002/adfm.201100448
  35. P. Agnes, G. Egrot, L.J. Blum, in: D.K. Martin (Ed.), Nanobiotechnology of Biomimetic Membranes, Springer, New York, 2007, pp. 23 (Chapter 2).
  36. J. Oviedo, M.A. San-Miguel, J.A. Heredia-Guerrero, J.J. Benitez, J. Phys. Chem. C 116 (2012) 7099. https://doi.org/10.1021/jp300829g
  37. A. Swami, A. Kumar, P.R. Selvakannan, S. Mandal, M. Sastry, Colloid Polym. Sci. 260 (2003) 367. https://doi.org/10.1016/S0021-9797(03)00047-X
  38. S. Paul, C. Pearson, A. Molloy, M.A. Cousins, M. Green, S. Kolliopoulou, P. Dimitrakis, P. Normand, D. Tsoukalas, M.C. Petty, Nano Lett. 3 (2003) 533. https://doi.org/10.1021/nl034008t
  39. R. McIntosh, M.A. Mamo, B. Jamieson, S. Roy, S. Bhattacharyya, Europhys. Lett. 97 (2012) 38001. https://doi.org/10.1209/0295-5075/97/38001
  40. F. Yavari, Z. Chen, A.V. Thomas, W. Ren, H.M. Cheng, N. Koratkar, Sci. Rep. 1 (2011) 166. https://doi.org/10.1038/srep00166
  41. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6 (2007) 652. https://doi.org/10.1038/nmat1967
  42. A.D. Smith, K. Elgammal, X. Fan, M.C. Lemme, A. Delin, M. Råsander, M. Ostling, RSC Adv. 7 (2017) 22329. https://doi.org/10.1039/C7RA02821K
  43. G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. van den Brink, P. Kelly, Phys. Rev. Lett. 101 (2008) 026803. https://doi.org/10.1103/PhysRevLett.101.026803
  44. A.G. Bannov, J. Prasek, O. Jasek, L. Zajickova, Sensors 17 (2) (2017) 320. https://doi.org/10.3390/s17020320
  45. N. Hasan, W. Zhang, A.D. Radadia, Nanomaterials 7 (10) (2017) 339. https://doi.org/10.3390/nano7100339
  46. S. Cui, H. Pu, G. Lu, Z. Wen, E.C. Mattson, H. Carol, G.J. Marija, W. Michael, J. Chen, ACS Appl. Mater. Interfaces 4 (2012) 4898. https://doi.org/10.1021/am301229w
  47. G. Wei, X. Duan, S. Yan, K. Qi, C. Wei, W. Zheng, Phys. Chem. Chem. Phys. 15 (2013) 11221. https://doi.org/10.1039/c3cp51663f
  48. Y. Sheng, S. Tiana, D. Zenga, K. Xua, X. Penga, W. Hao, S. Zhang, C. Xie, Sens. Actuators B 204 (2014) 351. https://doi.org/10.1016/j.snb.2014.07.076
  49. P.M. Likova, S. Jiri, P. Jan, V. Svatos, G.B. Alexander, O. Jasek, S. Petr, E. Marek, J.K. Lenka, H. Jaromir, Sensors 5 (2015) 2644.
  50. M. Gautam, A.H. Jayatissa, Solid-State Electron. 78 (2012) 159. https://doi.org/10.1016/j.sse.2012.05.059
  51. L.K. Randeniya, P.J. Martin, A. Bendavid, J. McDonnell, Carbon 49 (2011) 5265. https://doi.org/10.1016/j.carbon.2011.07.044

Cited by

  1. Room temperature ammonia sensing based on graphene oxide integrated flexible polyvinylidenefluoride/cerium oxide nanocomposite films vol.59, pp.13, 2020, https://doi.org/10.1080/25740881.2020.1744011
  2. Synthesis and Characterization of Graphene Oxide Under Different Conditions, and a Preliminary Study on its Efficacy to Adsorb Cu2+ vol.6, pp.1, 2018, https://doi.org/10.25046/aj060102
  3. Recent Advances in Ammonia Gas Sensors Based on Carbon Nanomaterials vol.12, pp.2, 2018, https://doi.org/10.3390/mi12020186