• 제목/요약/키워드: Co doping

검색결과 411건 처리시간 0.025초

PLD법으로 제조된 $CuSb_2O_6-SnO_2$ 박막의 전기.광학적 특성 (Preparation and Properties of $CuSb_2O_6$-doped $SnO_2$ Thin Films by Pulsed Laser Deposition)

  • 이채종;변승현;이희영;허영우;이준형;김정주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.262-263
    • /
    • 2007
  • Effect of co-doping on optical and electrical properties of $SnO_2$ based thin films were studied. $SnO_2$ ceramic targets with up to 50mol% $CuSb_2O_6$ were prepared by sintering mixed-oxide compact in the temperature range of $1100^{\circ}C{\sim}1300^{\circ}C$ in air. Thin films were then deposited onto glass substrates by pulsed laser deposition where substrate temperature was maintained in the range of $500{\sim}650^{\circ}C$ with oxygen pressure of 3m~7.5mTorr and energy density of $1Jcm^{-2}$. It was found that with the increase amount of dopant, the electrical properties of thin films tended to improve with the smallest resistivity value obtained at about 8mol% doping, further increase, however, usually impaired the optical transmission in the visible range.

  • PDF

Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries

  • Han, Dongwook;Park, Kwangjin;Park, Jun-Ho;Yun, Dong-Jin;Son, You-Hwan
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.180-186
    • /
    • 2018
  • We report the discovery of Li-rich $Li_{1+x}[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y]O_2$ as a cathode material for rechargeable lithium-ion batteries in which a small amount of tetravalent vanadium ($V^{4+}$) is selectively and completely incorporated into the manganese sites in the lattice structure. The unwanted oxidation of vanadium to form a $V_2O_5-like$ secondary phase during high-temperature crystallization is prevented by uniformly dispersing the vanadium ions in coprecipitated $[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y](OH)_2$ particles. Upon doping with $V^{4+}$ ions, the initial discharge capacity (>$275mA\;h\;g^{-1}$), capacity retention, and voltage decay characteristics of the Li-rich layered oxides are improved significantly in comparison with those of the conventional undoped counterpart.

Mo 기판위의 NaF 중간층을 이용한 Cu(In,Ga)Se2 광흡수층의 Na 도핑특성에 관한 연구 (Na Doping Properties of Cu(In,Ga)Se2 Absorber Layer Using NaF Interlayer on Mo Substrate)

  • 박태정;신동협;안병태;윤재호
    • 한국재료학회지
    • /
    • 제19권8호
    • /
    • pp.452-456
    • /
    • 2009
  • In high-efficiency Cu(In,Ga)$Se_2$ solar cells, Na is doped into a Cu(In,Ga)$Se_2$ light-absorbing layer from sodalime-glass substrate through Mo back-contact layer, resulting in an increase of device performance. However, this supply of sodium is limited when the process temperature is too low or when a substrate does not supply Na. This limitation can be overcome by supplying Na through external doping. For Na doping, an NaF interlayer was deposited on Mo/glass substrate. A Cu(In,Ga)$Se_2$ absorber layer was deposited on the NaF interlayer by a three-stage co-evaporation process As the thickness of NaF interlayer increased, smaller grain sizes were obtained. The resistivity of the NaF-doped CIGS film was of the order of $10^3{\Omega}{\cdot}cm$ indicating that doping was not very effective. However, highest conversion efficiency of 14.2% was obtained when the NaF thickness was 25 nm, suggesting that Na doping using an NaF interlayer is one of the possible methods for external doping.

Li1.6[MnM]1.6O4(M=Cu, Ni, Co, Fe)의 합성 및 리튬 흡착제용 신규 전구체로서의 물리화학적 성질 (Synthesis of Li1.6[MnM]1.6O4 (M=Cu, Ni, Co, Fe) and Their Physicochemical Properties as a New Precursor for Lithium Adsorbent)

  • 김양수;문원진;정순기;원대희;이상로;김병규;정강섭
    • 한국산학기술학회논문지
    • /
    • 제12권10호
    • /
    • pp.4660-4665
    • /
    • 2011
  • 리튬 흡착제용 신규 전구체인 $Li_{1.6}(MnM)_{1.6}O_4$ (M=Cu, Ni, Co, Fe)을 수열법에 의해 합성한 후에, 물리화학적인 성질을 고찰하였다. XRD와 HRTEM을 이용한 분석 결과로부터 Co를 도핑한 경우에는 본래의 스피넬 구조가 유지되는 반면에, Cu, Ni, Fe를 도핑한 경우에는 구조적인 변화가 발생하는 것을 확인하였다. Co 도핑에 의해 확인된 구조의 안정화는 산처리에 의해 리튬을 침출시킨 후에도 유지되었다. 해수에 함유된 리튬을 흡착하는 효율은 Co가 도핑된 망간 산화물 인 $Li_{1.6}[MnCo]_{1.6}O_4$가 상업적으로 적용 가능한 $Li_{1.33}Mn_{1.67}O_4$ 보다 우수한 특성을 나타내었다. 해수 1g으로부터 흡착되는 Li의 양은 $Li_{1.6}[MnCo]_{1.6}O_4$를 사용했을 경우에 35mg이었고, $Li_{1.33}Mn_{1.67}O_4$을 사용했을 경우에는 16mg 이었다.

Preparation of Ce0.8Gd0.2O1.9 Powder Using CeO2 Powder and Gd Precipitation and Effect of CoO doping on Sintering

  • Sim, Soo-Man
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.521-526
    • /
    • 2015
  • $Ce_{0.8}Gd_{0.2}O_{1.9}$(GDC20) powder was prepared from a mixture of submicron-sized $CeO_2$ powder and Gd precipitates using ammonium carbonate $((NH_4)_2CO_3)$ as a precipitant. The mixture was calcined at $700^{\circ}C$ for 4 h followed by ball-milling that resulted in the GDC powder with an average particle size of $0.46{\mu}m$. The powder had a very uniform particle size distribution with particle sizes ranging from $0.3{\mu}m$ to $1{\mu}m$. Sintering of undoped GDC samples did not show a relative density of 99.2% until the temperature was increased to $1500^{\circ}C$, whereas GDC samples doped with 5 mol% CoO exhibited a significant densification at lower temperature reaching a relative density of 97.6% at $1100^{\circ}C$ and of 98.8% at $1200^{\circ}C$.

Thermoelectric Properties of Fe-doped $CoSb_3$ Prepared by Encapsulated Induction Melting and Hot Pressing

  • Park, Kwan-Ho;Kim, Mi-Jung;Jung, Jae-Yong;You, Sin-Wook;Lee, Jung-Il;Ur, Soon-Chul;Kim, Il-Ho
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.686-687
    • /
    • 2006
  • The encapsulated induction melting and hot pressing were employed to prepare Fe-doped $CoSb_3$ skutterudites and their thermoelectric properties were investigated. Single phase $\delta-CoSb_3$ was successfully obtained by the subsequent heat treatment at 773K for 24 hours. Iron atoms acted as electron acceptors by substituting cobalt atoms. Thermoelectric properties were remarkably improved by the appropriate doping. $Co_{0.7}Fe_{0.3}Sb_3$ was found as an optimum composition for best thermoelectric properties in this work.

  • PDF

Eu와 V 동시 도핑에 의한 BiFeO3 박막의 구조와 전기적 특성 (Structural and Electrical Properties of BiFeO3 Thin Films by Eu and V Co-Doping)

  • 장성근;김윤장
    • 한국전기전자재료학회논문지
    • /
    • 제32권3호
    • /
    • pp.229-233
    • /
    • 2019
  • Pure $BiFeO_3$ (BFO) and (Eu, V) co-doped $Bi_{0.9}Eu_{0.1}Fe_{0.975}V_{0.025}O_{3+{\delta}}$ (BEFVO) thin films were deposited on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by chemical solution deposition. The effects of co-doping were observed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the BEFVO thin film were improved as compared to those of the pure BFO thin film. The remnant polarization ($2P_r$) of the BEFVO thin film was approximately $26{\mu}C/cm^2$ at a maximum electric field of 1,190 kV/cm with a frequency of 1 kHz. The leakage current density of the co-doped BEFVO thin film ($4.81{\times}10^{-5}A/cm^2$ at 100 kV/cm) was two orders of magnitude lower than of that of the pure BFO thin film.

비화공식 예광탄 응용을 위한 Dy+Ce 및 Dy+Na 이중 도핑된 MgB4O7의 높은 열발광 특성 (High Thermoluminescence Properties of Dy+Ce, and Dy+Na Co-Doped MgB4O7 for a Light Tracer Application)

  • 박진우;김나경;최지운;최영승;류상혁;양성진;정덕형;신병하
    • 한국재료학회지
    • /
    • 제33권1호
    • /
    • pp.15-20
    • /
    • 2023
  • 'Tracers' are bullets that emit light at the backside so that the shooter can see the trajectory of their flight. These light-emitting bullets allow snipers to hit targets faster and more accurately. Conventional tracers are all combustion type which use the heat generated upon ignition. However, the conventional tracer has a fire risk at the impact site due to the residual flame and has a by-product that can contaminate the inside of the gun and lead to firearm failure. To resolve these problems, it is necessary to develop non-combustion-type tracers that can convert heat to luminance, so-called 'thermoluminescence (TL)'. Here, we highly improve the thermoluminescence properties of MgB4O7 through co-doping of Dy3++Ce3+ and Dy3++Na+. The presence of doping materials (Dy3+, Ce3+, Na+) was confirmed by XPS (X-ray photoelectron spectroscopy). The as-synthesized co-doped MgB4O7 was irradiated with a specific radiation dose and heated to 500 ℃under dark conditions. Different thermoluminescence characteristics were exhibited depending on the type or amounts of doping elements, and the highest luminance of 370 cd/m2 was obtained when Dy 10 % and Na 5 % were co-doped.