• Title/Summary/Keyword: Co/Pd

Search Result 615, Processing Time 0.028 seconds

Dependence of Coercivity and Exchange Bias by Thickness and Materials of Inserted Layer in [Pd/Co]5/X/FeMn Multilayer with Out-of-plane Magnetic Anisotropy (수직자기이방성을 갖는 [Pd/Co]5/X/FeMn 다층박막에서 삽입층 물질과 두께에 따른 교환바이어스와 보자력의 의존성)

  • Heo, Jang;Park, Dong-Hun;Kang, Wang-Son;Ji, Sang-Hun;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.185-189
    • /
    • 2008
  • We observe the change of coercivity and exchange bias, depending on inserting material and thickness in a [Pd(0.6 nm)/$Co(0.2)]_5$/ FeMn(10) multilayer structure with perpendicular anisotropy. When 0.78 and 1.28 nm thick NiFe substitutes for Co in a $[Pd(0.6 nm)Co(0.2)]_4$/Pd(0.6)/NiFe(t)/FeMn(10) structure, we obtain the exchange bias of 360 Oe. In addition, when $Co_8Fe_2$ and $Co_9Fe_1$ are inserted for Co/FeMn interface, we obtain the exchange bias of 380 nm for a 0.68 nm thick $Co_8Fe_2$ and 580 Oe for a 0.52 nm thick $Co_9Fe_1$.

A study on the UHF PD measuring technique for GIS with a metal flange around insulating spacer (스페이서에 Metal flange가 있는 GIS에서의 UHF PD 측정 기술 연구)

  • Kang, W.J.;Lee, C.J.;Kang, Y.S.;Park, J.B.;Lee, H.C.;Park, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1638-1640
    • /
    • 2003
  • In the recent years, UHF PD measuring technique for detecting partial discharges was proved the effective method for Gas Insulated Switchgear (GIS). However, in case of GIS with a metal flange around insulating spacer, UHF PD measurement using typical external UHF PD sensor is difficult. In this paper, a novel hole-type UHF PD sensor based on Archimedean spiral antenna theory has been proposed and realized. All spacers with metal flange have small hole in order to inject epoxy. Using the novel hole-type UHF PD sensor, it makes detection possible to PD signal that are emitted through the epoxy injection hole. Additionally, the measuring characteristic of UHF PD signals from several artificial defects in GIS and the novel ${\Phi}$-f-q pattern analysis technology are discussed.

  • PDF

Effects of Sputtering Parameters on the Properties of Co/Pd Multilayered Films

  • Shin, J. N.;Hong, D. H.;Lee, T. D.
    • Journal of Magnetics
    • /
    • v.8 no.4
    • /
    • pp.146-148
    • /
    • 2003
  • Multilayered films of Co/Pd have been studied as a candidate material for a high density perpendicular recording medium due to higher anisotropy energy. However, high exchange coupling among grains results in large transition noise. To reduce the exchange coupling and grain size, addition of 3rd elements and physical separation of grains have been attempted. In the present paper, effects of sputtering pressure, Co sublayer thickness and Pd underlayer thickness on magnetic properties and microstructures were studied. It was found that by increasing sputtering pressure from 5 mTorr to 25 mTorr, Ms decreased to one half and coercivity increased more than 5000 Oe. The increase of the coercivity is associated with physical separation of grains by high pressure sputtering. Ms per volume of Co for Co/Pd multilayered film deposited at 25 mTorr shows continuous decrease with increasing Co sublayer thickness. This was related to void formation and intermixing of Co/Pd interface. Also, effect of Pd underlayer thickness on magnetic properties will be discussed.

CHARACTERIZATION OF MAGNETIZATION BEHAVIOR IN Co/Pd PERPENDICULAR ANISOTROPIC MULTILAYERS

  • Oh, Hoon-Sang;Joo, Seung-Ki
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.655-658
    • /
    • 1995
  • Magnetization behavior of sputter-deposited Co/Pd multilayers were characterized, and it has been found that even when the multilayers are sputtered at low pressure (10 mTorr), the coercivity of the multilayers can be increased to large extent without noticeable change of saturation magnetization by increasing the deposition pressure of Pd underlayer. It turned out that the surface topology of Pd underlayer gets rough as deposition pressure increases, which consequently affects the magnetization reversal mode of Co/Pd multilayers from domain wall motion to magnetic spin rotation. The enhancement of coercivity is attributed to the domain wall pinning effect which is comected with the surface roughness of Pd underlayer on which Co/Pd multilayers grow.

  • PDF

Soft X-ray Synchrotron-Radiation Spectroscopy Study of [Co/Pd] Multilayers as a Function of the Pd Sublayer Thickness (Pd층의 두께 변화에 따른 [Co/Pd] 다층박막의 연엑스선 방사광 분광 연구)

  • Kim, D.H.;Lee, Eunsook;Kim, Hyun Woo;Seong, Seungho;Kang, J.-S.;Yang, Seung-Mo;Park, Hae-Soo;Hong, JinPyo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.124-128
    • /
    • 2016
  • We have investigated the electronic structures of intermetallic multilayer (ML) films of [$Co(2{\AA})/Pd(x{\AA})$] (x: the thickness of the Pd sublayer; x = $1{\AA}$, $3{\AA}$, $5{\AA}$, $7{\AA}$, $9{\AA}$) by employing soft X-ray absorption spectroscopy (XAS) and soft X-ray magnetic circular dichroism (XMCD). Both Co 2p XAS and XMCD spectra are found to be similar to one another, as well as to those of Co metal, providing evidence for the metallic bonding of Co ions in [Co/Pd] ML films. By analyzing the measured Co 2p XMCD spectra, we have determined the orbital magnetic moments and the spin magnetic moments of Co ions in [$Co(2{\AA})/Pd(x{\AA})$] ML films. Based on this analysis, we have found that the orbital magnetic moments are enhanced greatly when x increases from $1{\AA}$ to $3{\AA}$, and then do not change much for $x{\geq}3{\AA}$. This finding suggests that the interface spin-orbit coupling plays an important role in determining the perpendicular magnetic anisotropy in [Co/Pd] ML films.

Dependence of Coercivity and Exchange Bias as Surface Magnetic Anisotropy in [Pd/Ferromagnet] Multilayer with Out-of-plane Magnetic Anisotropy (수직자기이방성을 갖는 [Pd/Ferromagnet] 다층막에서 표면자기이방성에 따른 교환력과 보자력의 의존성)

  • Heo, Jang;Kim, Hyun-Shin;Choi, Jin-Hyup;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.98-102
    • /
    • 2008
  • Dependence of the exchange bias and coercivity as surface magnetic anisotropy and ferromagnet materials for $[Pd/Co]_N$ and $[Pd/Co,(CoFe)]_N$/FeMn multilayers with perpendicular magnetic anisotropy were investigated. The coercivity was proportionally increased to 670 Oe by increasing stack number N in Ta(2.1 nm)/[Pd(3.1/N)/$Co(1.2/N)]_N$/Ta(2.1) multilayers with perpendicular magnetic anisotropy. Also, the coercivity in exchange biased multilayer was tend to increased by increasing stack number N. But coercivity of each materials have been in order of Co (600 Oe), $Co_5Fe_5$ (520 Oe) and $Co_8Fe_2$ (320 Oe) as function of the ferromagnet materials. The other side, exchange force of each materials is 300 Oe when the reiteration layer number N is 3. In over number of reiteration layer 3, they maintained coercivity between 200 Oe and 300 Oe.

Effect of Preparation Method for Pd/C Catalysts on Pd Characterization and their Catalytic Activity (Pd/C 촉매 제조 방법에 따른 Pd 금속의 특성 및 촉매 활성)

  • Kim, Ji Sun;Hong, Seong-Soo;Kim, Jong-Hwa;Lee, Man Sig
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.575-580
    • /
    • 2015
  • Pd/C catalysts were prepared by various preparation methods such as ion exchange, impregnation and polyol method and also characterized by nitrogen adsorption-desorption isothermal, XRD, FE-TEM and CO-chemisorption. The activities of these catalysts were tested in the hydrogenation of cyclohexene to cyclohexane. Catalytic activities of Pd/C catalysts were found to be effected by the chosen preparation methods. Pd dispersions of each Pd/C catalysts prepared by ion exchange, impregnation and polyol method were 17.55, 13.82% and 1.35%, respectively, confirmed by CO-chemisorption analysis. These were also in good agreement with the FE-TEM results. The Pd/C catalyst prepared by ion exchange method exhibits good performance with the cyclohexene conversion rate of 71% for 15 min. These results indicate that Pd/C catalyst having higher dispersion and lower particle size is in favor of hydrogenation cyclohexene and also Pd dispersion increases with the increment of catalytic activity.