DOI QR코드

DOI QR Code

Dependence of Coercivity and Exchange Bias as Surface Magnetic Anisotropy in [Pd/Ferromagnet] Multilayer with Out-of-plane Magnetic Anisotropy

수직자기이방성을 갖는 [Pd/Ferromagnet] 다층막에서 표면자기이방성에 따른 교환력과 보자력의 의존성

  • Published : 2008.06.30

Abstract

Dependence of the exchange bias and coercivity as surface magnetic anisotropy and ferromagnet materials for $[Pd/Co]_N$ and $[Pd/Co,(CoFe)]_N$/FeMn multilayers with perpendicular magnetic anisotropy were investigated. The coercivity was proportionally increased to 670 Oe by increasing stack number N in Ta(2.1 nm)/[Pd(3.1/N)/$Co(1.2/N)]_N$/Ta(2.1) multilayers with perpendicular magnetic anisotropy. Also, the coercivity in exchange biased multilayer was tend to increased by increasing stack number N. But coercivity of each materials have been in order of Co (600 Oe), $Co_5Fe_5$ (520 Oe) and $Co_8Fe_2$ (320 Oe) as function of the ferromagnet materials. The other side, exchange force of each materials is 300 Oe when the reiteration layer number N is 3. In over number of reiteration layer 3, they maintained coercivity between 200 Oe and 300 Oe.

수직자기이방성을 갖는 $[Pd/Co]_N$$[Pd/Co(CoFe)]_N$/FeMn 다층박막 구조를 이용하여 표면자기이방성 효과와 강자성 물질에 따른 보자력(coecivity, $H_c$)과 교환력(exchange bias, $H_{ex}$)의 변화를 관찰하였다. Ta(2.1 nm)/[Pd(3.1/N)/$Co(1.2/N)]_N$/Ta(2.1) 다층박막의 구조에서 반복층수 증가에 따라 보자력 670 Oe까지 선형적으로 증가하였으며, 교환 결합된 구조에서의 보자력은 물질에 따라 같은 증가 경향의 결과를 얻었다. 강자성 물질에 따른 가장 큰 보자력은 Co(600 Oe) > $Co_5Fe_5$(520 Oe) > $Co_8Fe_2$(320 Oe) 크기를 얻었다. 반면 교환력의 경우 반복 층수가 N=3 일 때 각 물질 모두 300 Oe의 결과 값을 얻었으며, 반복층수 3층 이후에는 $300{\sim}200$ Oe 사이에 거의 일정한 크기를 얻었다.

Keywords

References

  1. J. Camerero, Y. Pennec, J. Vogel, M. Bonfim, S. Pizzini, F. Ernult, F. Fettar, F. Garcia, F. Lancon, L. Billard, and B. Dieny, Phys. Rev. Lett., 91, 27201 (2003) https://doi.org/10.1103/PhysRevLett.91.027201
  2. H. G. Cho, Y. K. Kim, and S. R. Lee, IEEE Trans. Magn., 38(5), 2685 (2002) https://doi.org/10.1109/TMAG.2002.803155
  3. J. Sort, B. Rodmacq, S. Auffret, and B. Dieny, Appl. Phys. Lett., 83(9), 1800 (2003) https://doi.org/10.1063/1.1606495
  4. F. Garcia, G. Casali, S. Auffret, B. Rodmacq, and B. Dieny, J. Appl. Phys., 91, 6905 (2002) https://doi.org/10.1063/1.1447870
  5. S. V. Dijken, M. Besnier, J. Moritz, and J. M. D. Coey, J. Appl. Phys., 97, 10K114 (2005)
  6. S. Wiebel, J. P. Jamet, N. Vernier, A. Mougin, J. Ferre, V. Baltz, B. Rodmacq, and B. Dieny, Appl. Phys. Lett., 86, 142502 (2005) https://doi.org/10.1063/1.1897845
  7. K. Hong and N. Giordano, J. Magn. Magn. Mater., 151, 9855 (1995)
  8. S. Haan, C. Lodder, and T. J. A. Popma, J. Magn. Soc. Jap., 15, 349 (1991)
  9. S. Nakagawa, K. Takayama, A. Sato, and M. Naoe, IEEE Trans. Magn., 35, 2739 (1999) https://doi.org/10.1109/20.800970
  10. H. W. Joo, S. W. Kim, J. H. An, J. H. Choi, M. S. Lee, K. A. Lee, D. G. Hwang, and S. S. Lee, J. Magnetics, 10(1), 33 (2005) https://doi.org/10.4283/JMAG.2005.10.1.033
  11. H. W. Joo, J. H. An, B. G. Kim, S. W. Kim, K. A. Lee, D. G. Hwang, and S. S. Lee, J. of Kor. Mag. Soc., 14(4), 127 (2004) https://doi.org/10.4283/JKMS.2004.14.4.127
  12. F. Garcia, F. Fettar, S. Auffret, B. Rodmacq, and B. Dieny, J. Appl. Phys., 93(10), 8397 (2003) https://doi.org/10.1063/1.1558096
  13. J. Sort, B. Rodmacq, F. Garcia, S. Auffret, and B. Dieny, J. Appl. Phys., 95(11), 7163 (2004) https://doi.org/10.1063/1.1687534
  14. J. Sort, B. Dieny, M. Fraune, C. Koenig, F. Lunnebach, B. Beschoten, and G. Guntherodt, Appl. Phys. Lett., 84(18), 3696 (2004) https://doi.org/10.1063/1.1737484
  15. J. Moritz, F. Garcia, J. C. Toussaint, B. Dieny, and J. P. Nozieres, Europhysics Lett., 65(1), 123 (2004) https://doi.org/10.1209/epl/i2003-10063-9
  16. N. Thiyagarajah, S. Bae, H. Joo, Y. C. Han, and J. Kim, Appl. Phys. Lett., 92, 062504 (2008) https://doi.org/10.1063/1.2839596