DOI QR코드

DOI QR Code

Soft X-ray Synchrotron-Radiation Spectroscopy Study of [Co/Pd] Multilayers as a Function of the Pd Sublayer Thickness

Pd층의 두께 변화에 따른 [Co/Pd] 다층박막의 연엑스선 방사광 분광 연구

  • Kim, D.H. (Department of Physics, The Catholic University of Korea) ;
  • Lee, Eunsook (Department of Physics, The Catholic University of Korea) ;
  • Kim, Hyun Woo (Department of Physics, The Catholic University of Korea) ;
  • Seong, Seungho (Department of Physics, The Catholic University of Korea) ;
  • Kang, J.-S. (Department of Physics, The Catholic University of Korea) ;
  • Yang, Seung-Mo (Department of Physics and the Research Institute for Natural Science, Hanyang University) ;
  • Park, Hae-Soo (Department of Physics and the Research Institute for Natural Science, Hanyang University) ;
  • Hong, JinPyo (Department of Physics and the Research Institute for Natural Science, Hanyang University)
  • Received : 2016.07.06
  • Accepted : 2016.08.23
  • Published : 2016.08.31

Abstract

We have investigated the electronic structures of intermetallic multilayer (ML) films of [$Co(2{\AA})/Pd(x{\AA})$] (x: the thickness of the Pd sublayer; x = $1{\AA}$, $3{\AA}$, $5{\AA}$, $7{\AA}$, $9{\AA}$) by employing soft X-ray absorption spectroscopy (XAS) and soft X-ray magnetic circular dichroism (XMCD). Both Co 2p XAS and XMCD spectra are found to be similar to one another, as well as to those of Co metal, providing evidence for the metallic bonding of Co ions in [Co/Pd] ML films. By analyzing the measured Co 2p XMCD spectra, we have determined the orbital magnetic moments and the spin magnetic moments of Co ions in [$Co(2{\AA})/Pd(x{\AA})$] ML films. Based on this analysis, we have found that the orbital magnetic moments are enhanced greatly when x increases from $1{\AA}$ to $3{\AA}$, and then do not change much for $x{\geq}3{\AA}$. This finding suggests that the interface spin-orbit coupling plays an important role in determining the perpendicular magnetic anisotropy in [Co/Pd] ML films.

이 연구에서는 연 X선 광흡수 분광법(soft X-ray absorption spectroscopy: XAS)과 연 X선 자기 원편광 이색성(soft X-ray magnetic circular dichroism: XMCD)을 이용하여 수직자기이방성을 보이는 [$Co(2{\AA})/Pd(x{\AA})$] 형의 다층박막의 전자구조를 연구하였다(x = $1{\AA}$, $3{\AA}$, $5{\AA}$, $7{\AA}$, $9{\AA}$). Co 2p XAS와 XMCD 스펙트럼은 Pd 층의 두께 변화에 상관없이 서로 매우 유사하였으며, 또한 Co 금속의 Co 2p XAS와 XMCD 스펙트럼과도 매우 유사함이 관찰되었는데, 이러한 결과는 [$Co(2{\AA})/Pd(x{\AA})$] 다층박막에서 Co 이온들이 금속 결합을 하고 있다는 사실을 보여 준다. Co 2p XMCD 스펙트럼을 분석하여 두께에 따른 궤도 자기모멘트(orbital magnetic moment)와 스핀 자기모멘트(spin magnetic moment) 의 크기를 결정하였다. 이 결과에 의하면 Pd 층의 두께(x)가 $1{\AA}$에서 $3{\AA}$으로 증가할 때, 궤도 자기모멘트가 가장 크게 증가하였으며, $x{\geq}3{\AA}$ 이상의 영역에서는 별 다른 변화가 없었다. 이러한 결과는 [$Co(2{\AA})/Pd(x{\AA})$] 다층박막의 계면에서의 스핀-궤도 상호작용이 수직자기 이방성에 매우 중요한 역할을 한다는 사실을 나타낸다.

Keywords

References

  1. S. Mangin, D. Ravelosona, J. A. Katine, J. J. Carey, B. D. Terris, and E. E. Fullerton, Nature Mater. 5, 210 (2006). https://doi.org/10.1038/nmat1595
  2. H. Meng and J.-P. Wang, Appl. Phys. Lett. 88, 172506 (2006). https://doi.org/10.1063/1.2198797
  3. S. Bandiera, R. C. Sousa, S. Auffret, B. Rodmacq, and B. Dieny, Appl. Phys. Lett. 101, 072410 (2012). https://doi.org/10.1063/1.4745924
  4. L. M. Falicov, Physics Today (October 1992) p. 46.
  5. T. Shinjo, Surf. Sci. Rep. 12, 49 (1991).
  6. W. B. Zeper, F. J. A. M. Greidanus, P. F. Carcia, and C. R. Fincher, J. Appl. Phys. 65, 4971 (1989). https://doi.org/10.1063/1.343189
  7. M. N. Baiblich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988). https://doi.org/10.1103/PhysRevLett.61.2472
  8. S. S. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990). https://doi.org/10.1103/PhysRevLett.64.2304
  9. F. J. A. den Broeder, D. Kuiper, A. P. van de Moesselaer, and W. Hoving, Phys. Rev. Lett. 60, 2769 (1988). https://doi.org/10.1103/PhysRevLett.60.2769
  10. T. Oguchi, J. Magn. Magn. Mater. 126, 519 (1993). https://doi.org/10.1016/0304-8853(93)90675-R
  11. E. E. Fullerton, D. M. Kelly, J. Guimpel, I. K. Schuller, and Y. Bruynseeraede, Phys. Rev. Lett. 68, 859 (1992). https://doi.org/10.1103/PhysRevLett.68.859
  12. M. Kotsugi, M. Mizuguchi, S. Sekiya, M. Mizumaki, T. Kojima, T. Nakamura, H. Osawa, K. Kodama, T. Ohtsuki, T. Ohkochi, K. Takanashi, and Y. Watanabe, J. Magn. Magn. Mater. 326, 235 (2013). https://doi.org/10.1016/j.jmmm.2012.09.008
  13. J. B. Lee, G. G. An, S. M. Yang, W. S. Chung, and J. P. Hong, Appl. Phys. Lett. 104, 022204 (2014).
  14. H. J. G. Draaisma, W. J. M. de Jonge, and F. J. A. den Broeder, J. Magn. Magn. Mater. 66, 351 (1987). https://doi.org/10.1016/0304-8853(87)90169-7
  15. P. Bruno, Phys. Rev. B 39, 865 (1989). https://doi.org/10.1103/PhysRevB.39.865
  16. B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992). https://doi.org/10.1103/PhysRevLett.68.1943
  17. C. T. Chen, Y. U. Idzerda, H.-J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette, Phys. Rev. Lett. 75, 152 (1995). https://doi.org/10.1103/PhysRevLett.75.152
  18. F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 42, 5459 (1990). https://doi.org/10.1103/PhysRevB.42.5459
  19. G. van der Laan and I. W. Kirkman, J. Phys. Condens. Matter 4, 4189 (1992). https://doi.org/10.1088/0953-8984/4/16/019
  20. P. F. Carcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Letts. 47, 178 (1985). https://doi.org/10.1063/1.96254
  21. S.-C. Shin and A. C. Palumbo, J. Appl. Phys. 67, 317 (1990). https://doi.org/10.1063/1.345255
  22. D. G. Stinson and S.-C. Shin, J. Appl. Phys. 67, 4459 (1990). https://doi.org/10.1063/1.344904
  23. S. K. Kim, V. A. Chernov, and Y. M. Koo, J. Magn. Magn. Mater. 170, L7 (1997). https://doi.org/10.1016/S0304-8853(97)00060-7