• Title/Summary/Keyword: Clouds

Search Result 1,008, Processing Time 0.028 seconds

Nutritional Intake and Postoperative Pulmonary Complications among Lung Cancer Patients who Underwent Pulmonary Resection (폐절제술을 받은 폐암환자의 영양섭취 상태와 수술 후 폐합병증)

  • Lee, Seon Hye;Lee, Haejung;Hyun, Sookyung;Lee, Mi Soon;Kim, Do Hyung;Kim, Yeong Dae
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.1
    • /
    • pp.11-21
    • /
    • 2021
  • Purpose: The aim of this study was to examine the nutritional intake status of the lung cancer patients who underwent pulmonary resection and to analyze the relationship between the status of the nutritional intake and the occurrence of postoperative pulmonary complications. Methods: This study was a secondary analysis to determine whether the changes in the nutritional intake after surgery were related to pulmonary complications. Data of a total of 89 patients were included in the analysis and the nutritional intake status was confirmed using a 24-hour dietary recall method. The data were analyzed by descriptive statistics, chi-square or Fisher's exact test, and ANOVA using the SPSS WIN 26.0 program and word clouds were generated using the R software program. Results: Overall, a decrease in the postoperative nutritional intake was observed in the patients who underwent pulmonary resection, except for the intake of fat. The pulmonary complications were identified to be associated with BMI and the presence of comorbidity. Twenty-three out of 74 patients with vitamin E levels below the Estimated Average Requirements developed pulmonary complications after surgery. Conclusion: Lung cancer patients who underwent pulmonary resection generally have difficulty in acquiring appropriate nutritional intake and need balanced nutritional management. Future investigations on the impact of increased vitamin E intake on postoperative pulmonary complications may provide better insight into the relationship between vitamin E intake and pulmonary complication among patients who underwent pulmonary resection.

Evaluation of Heat Waves Predictability of Korean Integrated Model (한국형수치예보모델 KIM의 폭염 예측 성능 검증)

  • Jung, Jiyoung;Lee, Eun-Hee;Park, Hye-Jin
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.277-295
    • /
    • 2022
  • The global weather prediction model, Korean Integrated Model (KIM), has been in operation since April 2020 by the Korea Meteorological Administration. This study assessed the performance of heat waves (HWs) in Korea in 2020. Case experiments during 2018-2020 were conducted to support the reliability of assessment, and the factors which affect predictability of the HWs were analyzed. Simulated expansion and retreat of the Tibetan High and North Pacific High during the 2020 HW had a good agreement with the analysis. However, the model showed significant cold biases in the maximum surface temperature. It was found that the temperature bias was highly related to underestimation of downward shortwave radiation at surface, which was linked to cloudiness. KIM tended to overestimate nighttime clouds that delayed the dissipation of cloud in the morning, which affected the shortage of downward solar radiation. The vertical profiles of temperature and moisture showed that cold bias and trapped moisture in the lower atmosphere produce favorable conditions for cloud formation over the Yellow Sea, which affected overestimation of cloud in downwind land. Sensitivity test was performed to reduce model bias, which was done by modulating moisture mixing parameter in the boundary layer scheme. Results indicated that the daytime temperature errors were reduced by increase in surface solar irradiance with enhanced cloud dissipation. This study suggested that not only the synoptic features but also the accuracy of low-level temperature and moisture condition played an important role in predicting the maximum temperature during the HWs in medium-range forecasts.

Estimating the Forest Micro-topography by Unmanned Aerial Vehicles (UAV) Photogrammetry (무인항공기 사진측량 방법에 의한 산림 미세지형 평가)

  • Cho, Min-Jae;Choi, Yun-Sung;Oh, Jae-Heun;Lee, Eun-Jai
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.343-350
    • /
    • 2021
  • Unmanned aerial vehicles(UAV) photogrammetry provides a cost-effective option for collecting high-resolution 3D point clouds compared with UAV LiDAR and aerial photogrammetry. The main objectives of this study were to (1) validate the accuracy of 3D site model generated, and (2) determine the differences between Digital Elevation Model(DEM) and Digital Surface Model(DSM). In this study, DEM and DSM were shown to have varying degree of accuracy from observed data. The results indicated that the model predictions were considered tend to over- and under-estimated. The range of RMSE of DSM predicted was from 8.2 and 21.3 when compared with the observation. In addition, RMSE values were ranged from 10.2 and 25.8 to compare between DEM predicted and field data. The predict values resulting from the DSM were in agreement with the observed data compared to DEM calculation. In other words, it was determined that the DSM was a better suitable model than DEM. There is potential for enabling automated topography evaluation of the prior-harvest areas by using UAV technology.

Dynamic Object Detection Architecture for LiDAR Embedded Processors (라이다 임베디드 프로세서를 위한 동적 객체인식 아키텍처 구현)

  • Jung, Minwoo;Lee, Sanghoon;Kim, Dae-Young
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.11-19
    • /
    • 2020
  • In an autonomous driving environment, dynamic recognition of objects is essential as the situation changes in real time. In addition, as the number of sensors and control modules built into an autonomous vehicle increases, the amount of data the central control unit has to process also rapidly increases. By minimizing the output data from the sensor, the load on the central control unit can be reduced. This study proposes a dynamic object recognition algorithm solely using the embedded processor on a LiDAR sensor. While there are open source algorithms to process the point cloud output from LiDAR sensors, most require a separate high-performance processor. Since the embedded processors installed in LiDAR sensors often have resource constraints, it is essential to optimize the algorithm for efficiency. In this study, an embedded processor based object recognition algorithm was developed for autonomous vehicles, and the correlation between the size of the point clouds and processing time was analyzed. The proposed object recognition algorithm evaluated that the processing time directly increased with the size of the point cloud, with the processor stalling at a specific point if the point cloud size is beyond the threshold

  • PDF

The Error of the Method of Angular Sections of Microwave Sounding of Natural Environments in the System of Geoecological Monitoring

  • Fedoseeva, E.V.;Kuzichkin, O. R.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.47-53
    • /
    • 2021
  • The article deals with the problems of application of microwave methods in systems of geoecological monitoring of natural environments and resources of the agro-industrial complex. It is noted that the methods of microwave radiometry make it possible, by the power of the measured intrinsic radio-thermal radiation of the atmosphere, when solving inverse problems using empirical and semi-empirical models, to determine such parameters of the atmosphere as thermodynamic temperature, humidity, water content, moisture content, precipitation intensity, and the presence of different fractions of clouds.In addition to assessing the meteorological parameters of the atmosphere and the geophysical parameters of the underlying surface based on the data of microwave radiometric measurements, it is possible to promptly detect and study pollution of both the atmosphere and the earth's surface. A technique has been developed for the analysis of sources of measurement error and their numerical evaluation, because they have a significant effect on the accuracy of solving inverse problems of reconstructing the values of the physical parameters of the probed media.To analyze the degree of influence of the limited spatial selectivity of the antenna of the microwave radiometric system on the measurement error, we calculated the relative measurement error of the ratio of radio brightness contrasts in two angular directions. It has been determined that in the system of geoecological monitoring of natural environments, the effect of background noise is maximal with small changes in the radiobrightness temperature during angular scanning and high sensitivity of the receiving equipment.

Function and Meaning of Color Gray in Korean Films : Memory and Oblivion (한국영화에 표현된 회색의 기능과 의미 : 기억과 망각)

  • Kim, Jong-Guk
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.3
    • /
    • pp.77-87
    • /
    • 2021
  • The color gray in the cinema expresses the private or public memory and oblivion in the reminiscence scenes. The aesthetic function and meaning of gray that interacts with other elements in cinematic time and space are expanded in various ways. This study was analyzed the cases in which gray was used as the main visual style by limiting the scope to Korean films. Based on the traditional cultural symbolic meaning of gray, I analyzed how it was applied and transformed in films, and interpreted the cultural-social meaning by the interaction between gray and other elements. In film history starting from monochrome, gray has been used as a visual device suitable for realizing cinematic or imaginary reality. Gray is adopted when dreams or recollections are visualized as imaginary reality, and it is used when dreamy imaginations of daydreaming are demonstrated. Gray, which reproduces the dreamlike reality of imagination, is the concrete and realistic way of expression. First, in Korean films, gray is a flashback visual device that recalls the past, and is an intermediary visual form that materializes the imaginary. In films such as Ode to My Father (2014), DongJu (2015), A Resistance(2019) and The Battle : Roar to Victory (2019), the gray of the past is a visual device for cultural memory that builds the homogeneity and identity of the group. In the era of hyper-visibility, gray in black and white images is intended to be clearly remembered by unfamiliarity rather than blurry oblivion by familiarity. Second, in genre films with disaster materials such as Train To Busan (2016) and Ashfall (2019), the grays of rain, fog, clouds, shadows and smoke highlight other elements, and the gray color causes anxiety and fear. In war films such as TaeGukGi: Brotherhood Of War (2003) and The Front Line (2011), gray shows a more intense brutality than the primary color. In sports films such as 4th Place (2015), Take Off (2009) and Forever The Moment (2007), gray expresses uncertainty and immaturity. Third, gray visualizes the historical memory of A Petal (1996), the oblivion in Oh! My Gran (2020) and Poetry (2010), and the reality of daydreaming Gagman (1988) and Dream (1990). At the boundary between imagination and reality, gray is a visual form of dreams, memories and forgetfulness.

Design and Implementation of Multi-Cloud Service Common Platform (멀티 클라우드 서비스 공통 플랫폼 설계 및 구현)

  • Kim, Sooyoung;Kim, Byoungseob;Son, Seokho;Seo, Jihoon;Kim, Yunkon;Kang, Dongjae
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.75-94
    • /
    • 2021
  • The 4th industrial revolution needs a fusion of artificial intelligence, robotics, the Internet of Things (IoT), edge computing, and other technologies. For the fusion of technologies, cloud computing technology can provide flexible and high-performance computing resources so that cloud computing can be the foundation technology of new emerging services. The emerging services become a global-scale, and require much higher performance, availability, and reliability. Public cloud providers already provide global-scale services. However, their services, costs, performance, and policies are different. Enterprises/ developers to come out with a new inter-operable service are experiencing vendor lock-in problems. Therefore, multi-cloud technology that federatively resolves the limitations of single cloud providers is required. We propose a software platform, denoted as Cloud-Barista. Cloud-Barista is a multi-cloud service common platform for federating multiple clouds. It makes multiple cloud services as a single service. We explain the functional architecture of the proposed platform that consists of several frameworks, and then discuss the main design and implementation issues of each framework. To verify the feasibility of our proposal, we show a demonstration which is to create 18 virtual machines on several cloud providers, combine them as a single resource, and manage it.

Spatial Gap-Filling of Hourly AOD Data from Himawari-8 Satellite Using DCT (Discrete Cosine Transform) and FMM (Fast Marching Method)

  • Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Kang, Jonggu;Kim, Geunah;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.777-788
    • /
    • 2021
  • Since aerosol has a relatively short duration and significant spatial variation, satellite observations become more important for the spatially and temporally continuous quantification of aerosol. However, optical remote sensing has the disadvantage that it cannot detect AOD (Aerosol Optical Depth) for the regions covered by clouds or the regions with extremely high concentrations. Such missing values can increase the data uncertainty in the analyses of the Earth's environment. This paper presents a spatial gap-filling framework using a univariate statistical method such as DCT-PLS (Discrete Cosine Transform-based Penalized Least Square Regression) and FMM (Fast Matching Method) inpainting. We conducted a feasibility test for the hourly AOD product from AHI (Advanced Himawari Imager) between January 1 and December 31, 2019, and compared the accuracy statistics of the two spatial gap-filling methods. When the null-pixel area is not very large (null-pixel ratio < 0.6), the validation statistics of DCT-PLS and FMM techniques showed high accuracy of CC=0.988 (MAE=0.020) and CC=0.980 (MAE=0.028), respectively. Together with the AI-based gap-filling method using extra explanatory variables, the DCT-PLS and FMM techniques can be tested for the low-resolution images from the AMI (Advanced Meteorological Imager) of GK2A (Geostationary Korea Multi-purpose Satellite 2A), GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI2 (Geostationary Ocean Color Imager) of GK2B (Geostationary Korea Multi-purpose Satellite 2B) and the high-resolution images from the CAS500 (Compact Advanced Satellite) series soon.

Secure Scheme Between Nodes in Cloud Robotics Platform (Cloud Robotics Platform 환경에서 Node간 안전한 통신 기법)

  • Kim, Hyungjoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.595-602
    • /
    • 2021
  • The robot is developing into a software-oriented shape that recognizes the surrounding situation and is given a task. Cloud Robotics Platform is a method to support Service Oriented Architecture shape for robots, and it is a cloud-based method to provide necessary tasks and motion controllers depending on the situation. As it evolves into a humanoid robot, the robot will be used to help humans in generalized daily life according to the three robot principles. Therefore, in addition to robots for specific individuals, robots as public goods that can help all humans depending on the situation will be universal. Therefore, the importance of information security in the Cloud Robotics Computing environment is analyzed to be composed of people, robots, service applications on the cloud that give intelligence to robots, and a cloud bridge that connects robots and clouds. It will become an indispensable element for In this paper, we propose a Security Scheme that can provide security for communication between people, robots, cloud bridges, and cloud systems in the Cloud Robotics Computing environment for intelligent robots, enabling robot services that are safe from hacking and protect personal information.

Applicability Review of Street Dimensional Data Survey Using Point Clouds Generated from Drone Photogrammetry (드론 항공사진측량 기반 포인트 클라우드 데이터를 활용한 가로환경 조사 가능성 연구)

  • Oh, Sunghoon;Kim, Myung Jo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.401-408
    • /
    • 2021
  • With the proposal of amendments to the Pedestrian Safety Act in 2021, when the amendment bill is passed in the near future, a general dimensional investigation of the sidewalks' physical condition, which is the basis of pedestrian safety, is expected to be legislated and made mandatory. Therefore, this study presented a affordable methodology for street environment survey using entry-level drones and examined the feasibility of conducting a complete survey of pedestrian paths by local governments nationwide. To this end, various street facilities in the experimental site were measured to compare and analyze the accuracy of the point cloud data. As a result of the analysis, it was found that the measurement error range satisfies the public surveying guidelines. If the methodology presented in this study is applied, it is expected that individual local governments will be able to make a significant contribution to monitoring the physical conditions of streets to improve the pedestrian environment in the near future.