• Title/Summary/Keyword: Closure model

Search Result 482, Processing Time 0.025 seconds

Development of four-equation turbulence model for prediction of mixed convective heat transfer on a flat plate (수평평판위 의 혼합대류 열전말 계산 을 위한 4-방정식 모델 의 개발)

  • 성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.193-203
    • /
    • 1983
  • The mixed convective heat transfer problems are characterized by the relatively significant contribution of buoyancy force to the transport processes of momentum and heat. Past analytical studies on this kind of problems have been carried out by employing either the conventional R-.epsilon. turbulence model which includes constant turbulent Prandtl number .sigma.$_{+}$ 1 or an extended R-.epsilon. turbulence model which takes account of the buoyancy effect in appropriate length scale equations. But in the latter case, the temperature variance .the+a.$^{2}$ over bar is approximated by a model under local equilibrium condition and the time scale ratio between velocity and temperature is assumed to be constant. These approximation is known to break down when the buoyancy effect is dominant. The present study is aimed at development of new computational turbulence closure level which can be applied to this rather complex turbulent process. The temperature variance is obtained directly by solving its dynamic transport equation and the time scale ratio which is variable in space is computed by a solution of a dynamic equation for the rate of scalar dissipation .epsilon.$_{\thetod}$ It was found that the computational results are in good agreement with available experimental data of wide range of unstable conditions.

Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

Numerical Simulation on the ULPU-V Experiments using RPI Model (RPI모형을 이용한 ULPU-V시험의 수치모사)

  • Suh, Jungsoo;Ha, Huiun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.147-152
    • /
    • 2017
  • The external reactor vessel cooling (ERVC) is well known strategy to mitigate a severe accident at which nuclear fuel inside the reactor vessel is molten. In order to compare the heat removal capacity of ERVC between the nuclear reactor designs quantitatively, numerical method is often used. However, the study for ERVC using computational fluid dynamics (CFD) is still quite scarce. As a validation study on the numerical prediction for ERVC using CFD, the subcooled boiling flow and natural circulation of coolant at the ULPU-V experiment was simulated. The commercially available CFD software ANSYS-CFX was used. Shear stress transport (SST) model and RPI model were used for turbulence closure and wall-boiling, respectively. The averaged flow velocities in the downcomer and the baffle entry under the reactor vessel lower plenum are in good agreement with the available experimental data and recent computational results. Steam generated from the heated wall condenses rapidly and coolant flows maintains single-phase flow until coolant boils again by flashing process due to the decrease of saturation temperature induced by higher elevation. Hence, the flow rate of coolant natural circulation does not vary significantly with the change of heat flux applied at the reactor vessel, which is also consistent with the previous literatures.

Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석 코드 개발)

  • Kim J.J.;Kim H.T.;Van S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF

Numerical Simulation of Flow in a Total Artificial Heart (인공심장내의 혈류유동의 컴퓨터 시뮬레이션)

  • ;K.B
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.87-96
    • /
    • 1992
  • In thIns paper, a numerical simulation of steady laminar and turbulent flow in a two dimensional model for the total artificial heart is'presented. A trlleaflet polyurethane valve was simulated at the outflow orifice while the Inflow orifice had a trileaflet or a flap valve. The finite analytic numerical method was employed to obtain solutions to the governing equations in the Cartesian coordinates. The closure for turbulence model was achieved by employing the k-$\varepsilon$-E model. The SIMPLER algo rithm was used to solve the problem in primitive variables. The numerical solutions of the slulated model show that regions of relative stasis and trapped vortices were smaller within the ventricular chamber with the flap valve at the Inflow orifice than that with the trileaflet valve. The predicted Reynolds stresses distal to the inflow valve within the ventricular chamber were also found to be smaller wlth the flap valve than with the trlleaflet valve. These resu1ts also suggest a correlation be- tween high turbulent stresses and the presence of thrombus In the vicinity of the valves in the total artificial hearts. The computed velocity vectors and trubulent stresses were comparable with previ ously reported in vitro measurements in artificial heart chambers. Analysis of the numerical solo talons suggests that geometries similar to the flap valve(or a tilting disc valve) results in a better flow dynamics within the total artificial heart chamber compared to a trileaflet valve.

  • PDF

Parametric study of population balance model on the DEBORA flow boiling experiment

  • Aljosa Gajsek;Matej Tekavcic;Bostjan Koncar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.624-635
    • /
    • 2024
  • In two-fluid simulations of flow boiling, the modeling of the mean bubble diameter is a key parameter in the closure relations governing the intefacial transfer of mass, momentum, and energy. Monodispersed approach proved to be insufficient to describe the significant variation in bubble size during flow boiling in a heated pipe. A population balance model (PBM) has been employed to address these shortcomings. During nucleate boiling, vapor bubbles of a certain size are formed on the heated wall, detach and migrate into the bulk flow. These bubbles then grow, shrink or disintegrate by evaporation, condensation, breakage and aggregation. In this study, a parametric analysis of the PBM aggregation and breakage models has been performed to investigate their effect on the radial distribution of the mean bubble diameter and vapor volume fraction. The simulation results are compared with the DEBORA experiments (Garnier et al., 2001). In addition, the influence of PBM parameters on the local distribution of individual bubble size groups was also studied. The results have shown that the modeling of aggregation process has the largest influence on the results and is mainly dictated by the collisions due to flow turbulence.

Estimation of Forest Biomass for Muju County using Biomass Conversion Table and Remote Sensing Data (산림 바이오매스 변환표와 위성영상을 이용한 무주군의 산림 바이오매스추정)

  • Chung, Sang Young;Yim, Jong Su;Cho, Hyun Kook;Jeong, Jin Hyun;Kim, Sung Ho;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.4
    • /
    • pp.409-416
    • /
    • 2009
  • Forest biomass estimation is essential for greenhouse gas inventories and terrestrial carbon accounting. Remote sensing allows for estimating forest biomass over a large area. This study was conducted to estimate forest biomass and to produce a forest biomass map for Muju county using forest biomass conversion table developed by field plot data from the 5th National Forest Inventory and Landsat TM-5. Correlation analysis was carried out to select suitable independent variables for developing regression models. It was resulted that the height class, crown closure density, and age class were highly correlated with forest biomass. Six regression models were used with the combination of these three stand variables and verified by validation statistics such as root mean square error (RMSE) and mean bias. It was found that a regression model with crown closure density and height class (Model V) was better than others for estimating forest biomass. A biomass conversion table by model V was produced and then used for estimating forest biomass in the study site. The total forest biomass of the Muju county was estimated about 8.8 million ton, or 128.3 ton/ha by the conversion table.

Fatigue Crack Propagation and Fatigue Life Evaluation of High-Performance Steel using Modified Forman Model (수정 Forman 모델을 이용한 고성능 강재의 피로균열전파와 피로수명평가)

  • Choi, Sung-Won;Kang, Dong-Hwan;Lee, Jong-Kwan;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1361-1368
    • /
    • 2011
  • Fatigue crack propagation behavior and the fatigue life in-high performance steel were investigated by means of fatigue crack propagation tests under constant loading conditions of 'R=0.1 and f=0.1 Hz', 'R=0.3 and f=0.3 Hz', and 'R=0.5 and f=0.5 Hz' for the load ratio and frequency, respectively. A modified Forman model was developed to describe the fatigue crack propagation behavior for the conditions. The modified Forman model is applicable to all fatigue crack propagation regions I, II, and III by implementing the threshold stress intensity factor range and the effective stress intensity factor range caused by crack closure. The results show that predicted fatigue lives of Forman and modified Forman models were 8,814 and 12,292 cycles, respectively when the crack propagated approximately 5.0 mm and the load ratio and frequency were both 0.1. Comparison of the test results indicates that the modified Forman model showed much more effective fatigue crack propagation behavior in high-performance steel.

Modeling flow and scalar dispersion around Cheomseongdae

  • Kim, Jae-Jin;Song, Hyo-Jong;Baik, Jong-Jin
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.315-330
    • /
    • 2006
  • Flow and scalar dispersion around Cheomseongdae are numerically investigated using a three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence closure scheme. Cheomseongdae is an ancient astronomical observatory in Gyeongju, Korea, and is chosen as a model obstacle because of its unique shape, that is, a cylinder-shaped architectural structure with its radius varying with height. An interesting feature found is a mid-height saddle point behind Cheomseongdae. Different obstacle shapes and corresponding flow convergences help to explain the presence of the saddle point. The predicted size of recirculation zone formed behind Cheomseongdae increases with increasing ambient wind speed and decreases with increasing ambient turbulence intensity. The relative roles of inertial and eddy forces in producing cavity flow zones around an obstacle are conceptually presented. An increase in inertial force promotes flow separation. Consequently, cavity flow zones around the obstacle expand and flow reattachment occurs farther downwind. An increase in eddy force weakens flow separation by mixing momentum there. This results in the contraction of cavity flow zones and flow reattachment occurs less far downwind. An increase in ambient wind speed lowers predicted scalar concentration. An increase in ambient turbulence intensity lowers predicted maximum scalar concentration and acts to distribute scalars evenly.

Classification of Flow Regimes in Urban Street Canyons Using a CFD Model (CFD 모형을 이용한 도시 도로 협곡에서의 흐름 체계 분류)

  • Kim, Jae-Jin;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.525-535
    • /
    • 2005
  • Using a three-dimensional computational fluid dynamics (CFD) model with the $k-{\varepsilon}$ turbulence closure scheme based on the renormalization group theory, flow regimes in urban street canyons are classified according to the building and street aspect ratios. The transition between skimming flow (SF) and wake interference flow (WIF) is determined with the size of double-eddy circulation generated behind the upwind building. The transition between WIF and isolated roughness flow (IRF) is determined with the flow reattachment distance from the upwind building. The critical aspect ratios at which the flow transition occurs are found and compared with those in previous studies. The results show that the flow-regime classification method used in this study is quite reasonable and that the values of the critical aspect ratios are generally consistent with those in fluid experiments or large-eddy simulation. The regression equation describing a relation between the building and street aspect ratios at the flow-regime transition is presented.