• Title/Summary/Keyword: Closest point of approach

Search Result 54, Processing Time 0.024 seconds

A study of the development of Ship's Collision Risk Algorithm by Relative bearing in Closest Position of Approach(CPA) (최근접점 상대방위에 따른 선박충돌위험알고리즘 개발에 관한 연구)

  • Lee, Jin-Suk;Song, Chae-Uk;Jung, Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.47-48
    • /
    • 2015
  • VTSO make a decision which one will be danger and what to expect ship's actions due to each encountering situation with CPA(Closest Point of Approach) and TCPA(Time to Closest Point of Approach) by monitoring ship's vectors(Course & Speeds) in real-time through the VTS system. This study is the fundamental research for developing algorithm and system that does not decide the collision risk in one's own ship's viewpoints, but it identifies the related ships into danger through the third party(VTS ) in real time.

  • PDF

UAV Conflict Detection and Resolution Based on Geometric Approach

  • Park, Jung-Woo;Oh, Hyon-Dong;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • A method of conflict detection and resolution is described by using simple geometric approach. Two VAVs are dealt with and considered as point masses with constant velocity. This paper discusses en route aircraft which are assumed to be linked by real time data bases like ADS-B. With this data base, all DAVs share the information each other. Calculating PCA (Point of Closest Approach), we can evaluate the worst conflict condition between two VAVs. This paper proposes one resolution maneuvering logic, which can be called 'Vector Sharing Resolution'. In case of conflict, using miss distance vector in PCA, we can decide the directions for two VAVs to share the conflict region. With these directions, VAVs are going to maneuver cooperatively. First of all, this paper describes some '2-D' conflict scenarios and then extends to '3-D' conflict scenarios.

A Practical Method to Compute the Closest Approach Distance of Two Ellipsoids (두 타원체 사이의 최단 근접 거리를 구하는 실용적인 방법)

  • Choi, Min Gyu
    • Journal of Korea Game Society
    • /
    • v.19 no.1
    • /
    • pp.5-14
    • /
    • 2019
  • This paper presents a practical method to compute the closest approach distance of two ellipsoids in their inter-center direction. This is the key technique for collision handling in the dynamic simulation of rigid and deformable bodies approximated with ellipsoids. We formulate a set of equations with the inter-center distance and the contact point and normal for the two ellipsoids contacting each other externally. The equations are solved using fixed-point iteration and Aitken's delta-squared process. In addition, we introduce a novel stopping criterion expressed in terms of the error in distance. We demonstrate the efficiency and practicality of our method in various experiments.

실시간 위치기반 선박 충돌 위험도 알고리즘 개발에 관한 연구

  • Lee, Jin-Seok;Song, Jae-Uk;Jeong, Min;Kim, Jong-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.343-345
    • /
    • 2014
  • 실시간 위치 기반 선박 충돌 위험도는 자선의 관점에서 선박충돌의 위험을 판단하는 것이 아니라 VTS(Vessel Traffic Service)의 관점에서 충돌 위험이 있는 선박을 식별하고 충돌 위험 지역을 전자 해도에서 실시간으로 확인하여 해당 해역 전체의 선박 교통흐름과 통항하는 선박간의 위험도를 평가하는 것이 목적이다. 항해사로써의 승선 경험과 관제사로써의 근무 경험, 그리고 다 년간 VTS 관제 업무를 수행하고 있는 관제사들로부터 충돌의 위험이 있는 선박을 식별하는 방법으로 주로 선박간의 벡터(코스와 속력)를 실시간으로 모니터링하여 충돌 위험이 있는 선박에게 피항 조치를 취하도록 정보를 제공하는 것으로 확인되었다. 따라서 DCPA(Distance to Closest Point of Approach)와 TCPA(Time to Closest Point of Approach), 그리고 최근접시간을 변수로 하는 충돌 위험 함수식(최대값=100)을 연구하여 각 지점의 위험도를 실시간으로 표시하는 기초 모델을 연구하였다.

  • PDF

실시간 위치기반 선박 충돌 위험도 모델 개발에 관한 연구

  • Lee, Jin-Seok;Song, Jae-Uk;Jeong, Min;Lee, Jeong-Jin;Park, Su-Ji
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.63-65
    • /
    • 2013
  • 실시간 위치 기반 선박 충돌 위험도는 자선의 관점에서 선박충돌의 위험을 판단하는 것이 아니라 VTS(Vessel Traffic Service)의 관점에서 충돌 위험이 있는 선박을 식별하고 충돌 위험 지역을 전자 해도에서 실시간으로 확인하여 해당 해역 전체의 선박 교통흐름과 통항하는 선박간의 위험도를 평가하는 것이 목적이다. 항해사로써의 승선 경험과 관제사로써의 근무 경험, 그리고 다 년간 VTS 관제 업무를 수행하고 있는 관제사들로부터 충돌의 위험이 있는 선박을 식별하는 방법으로 주로 선박간의 벡터(코스와 속력)를 실시간으로 모니터링하여 충돌 위험이 있는 선박에게 피항 조치를 취하도록 정보를 제공하는 것으로 확인되었다. 따라서 DCPA(Distance to Closest Point of Approach)와 TCPA(Time to Closest Point of Approach), 그리고 최근접시간을 변수로 하는 충돌 위험 함수식(최대값=100)을 연구하여 최대 위험값을 가지는 지점과 주변의 위험값을 계산하여 해역 전체의 위험도를 실시간으로 표시하는 기초 모델을 연구하였다.

  • PDF

Study on the Evaluation of Ship Collision Risk based on the Dempster-Shafer Theory (Dempster-Shafer 이론 기반의 선박충돌위험성 평가에 관한 연구)

  • Jinwan Park;Jung Sik Jeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.462-469
    • /
    • 2023
  • In this study, we propose a method for evaluating the risk of collision between ships to support determination on the risk of collision in a situation in which ships encounter each other and to prevent collision accidents. Because several uncertainties are involved in the navigation of a ship, must be considered when evaluating the risk of collision. We apply the Dempster-Shafer theory to manage this uncertainty and evaluate the collision risk of each target vessel in real time. The distance at the closest point approach (DCPA), time to the closest point approach (TCPA), distance from another vessel, relative bearing, and velocity ratio are used as evaluation factors for ship collision risk. The basic probability assignments (BPAs) calculated by membership functions for each evaluation factor are fused through the combination rule of the Dempster-Shafer theory. As a result of the experiment using automatic identification system (AIS) data collected in situations where ships actually encounter each other, the suitability of evaluation was verified. By evaluating the risk of collision in real time in encounter situations between ships, collision accidents caused by human errora can be prevented. This is expected to be used for vessel traffic service systems and collision avoidance systems for autonomous ships.

A Robust and Efficient Method to Compute the Closest Approach Distance between Two Ellipsoids (두 타원체 사이의 최단 접근 거리를 구하는 안정적이며 효율적인 방법)

  • Choi, Min Gyu
    • Journal of Korea Game Society
    • /
    • v.19 no.6
    • /
    • pp.99-106
    • /
    • 2019
  • This paper addresses a method to compute the closest approach distance between two ellipsoids in their inter-center direction. This is the key technique for collision detection and response between ellipsoids. We formulate a set of conditions with the inter-center distance, the contact point and the contact normal vector of the two externally-contacting ellipsoids. The equations are solved robustly and efficiently using a hybrid of Newton's method and the bisection method with root bracketing. We demonstrate the robustness and efficiency of the proposed method in various experiments.

Use of Fuzzy technique for Calculating Degree of Collision Risk in Obstacle Avoidance of Unmanned Underwater Vehicles (퍼지기법을 이용한 무인잠수정의 장애물회피를 위한 충돌위험도 산출)

  • Jung, Hee;Kim, Seong-Gon;Kim, Yong-Gi
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.112-119
    • /
    • 2011
  • This paper introduces a technique for calculating the degree of collision risk used in collision avoidance system of AUVs. The collision risk will be reckoned with the fuzzy inference, which uses TCPA(Time of the Closest Point of Approach) and DCPA(Distance of the Closest Point of Approach) as factors. A method to obtain TCPA and DCPA for 3-dimension is suggested. The degree of collision risk is provided to collision avoidance system, and is verified the effectiveness through simulation.

Collision risk assessment based on the vulnerability of marine accidents using fuzzy logic

  • Hu, Yancai;Park, Gyei-Kark
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.541-551
    • /
    • 2020
  • Based on the trend, there have been numerous researches analysing the ship collision risk. However, in this scope, the navigational conditions and external environment are ignored or incompletely considered in training or/and real situation. It has been identified as a significant limitation in the navigational collision risk assessment. Therefore, a novel algorithm of the ship navigational collision risk solving system has been proposed based on basic collision risk and vulnerabilities of marine accidents. The vulnerability can increase the possibility of marine collision accidents. The factors of vulnerabilities including bad weather, tidal currents, accidents prone area, traffic congestion, operator fatigue and fishing boat operating area are involved in the fuzzy reasoning engines to evaluate the navigational conditions and environment. Fuzzy logic is employed to reason basic collision risk using Distance to Closest Point of Approach (DCPA) and Time of Closest Point of Approach (TCPA) and the degree of vulnerability in the specific coastal waterways. Analytical Hierarchy Process (AHP) method is used to obtain the integration of vulnerabilities. In this paper, vulnerability factors have been proposed to improve the collision risk assessment especially for non-SOLAS ships such as coastal operating ships and fishing vessels in practice. Simulation is implemented to validate the practicability of the designed navigational collision risk solving system.