• 제목/요약/키워드: Closed-loop

Search Result 2,023, Processing Time 0.03 seconds

Position Control of a 3 dof Closed-loop Cylinder System Using ER Valve Actuators (ER 밸브 작동기를 이용한 3자유도 폐회로 실린더 시스템의 위치제어)

  • 최승복;조명수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.165-173
    • /
    • 2000
  • This Paper presents the position tracking control of a closed-loop cylinder system using electro-rheological(ER) valve actuators. After manufacturing three sets of cylindrical ER valves on the basis of Bingham model of ER fluid, a 3 dof(degree-of-freedom) closed-loop cylinder system having the heave, roll and pitch motions is constructed. The governing equations of motion are derived using Lagrange's equation and a control model is formulated by considering nonlinear characteristics of the system. Sliding mode controllers are then designed fer these ER valve actuators in order to achieve position tracking control. The effectiveness of trajectory tracking control performance of the proposed cylinder system is demonstrated through computer simulation and experimental implementation of the sliding mode controller.

  • PDF

PDC Intelligent control-based theory for structure system dynamics

  • Chen, Tim;Lohnash, Megan;Owens, Emmanuel;Chen, C.Y.J.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2020
  • This paper deals with the problem of global stabilization for a class of nonlinear control systems. An effective approach is proposed for controlling the system interaction of structures through a combination of parallel distributed compensation (PDC) intelligent controllers and fuzzy observers. An efficient approximate inference algorithm using expectation propagation and a Bayesian additive model is developed which allows us to predict the total number of control systems, thereby contributing to a more adaptive trajectory for the closed-loop system and that of its corresponding model. The closed-loop fuzzy system can be made as close as desired, so that the behavior of the closed-loop system can be rigorously predicted by establishing that of the closed-loop fuzzy system.

Implementation of Profibus-FMS Network for Real-Time Closed-Loop Control System (실시간 폐루프 제어 시스템을 위한 Profibus-FMS 네트워크의 구현)

  • Lee, Kyung-Chang;Kim, Kee-Woong;Kim, Hee-Hyun;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.911-917
    • /
    • 2000
  • As many sensors and actuators are used in various automated systems, the application of network to real-time distributed control system is gaining acceptance in many industries. In order to take advantages of networking, however, the network should be carefully designed to satisfy real-time distributed control. This paper presents an implementation method of closed-loop control using Profibus-FMS. In order to implement a closed-loop control system, we used industrial computers with Profibus-FMS network cards and a DC servo motor. Through various experiments, the step response of the control system with network was compared with the reference response without network.

  • PDF

On order determination in identification of closed-loop systems

  • Oura, Kunihiko;Akizuki, Kageo;Hanazaki, Izumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.480-483
    • /
    • 1995
  • Identification of a process in closed-loop control system is an important problem in practice. This paper deals with parameter estimation using input-output data of the process operating in a closed-loop system. It is necessary to determine orders and delay-time to get consistent estimators by least square method for input-output data collected from the process. The authors considered a problem to determine delay-time in the condition that orders were known, in last KACC. So we extend the range to determine orders and delay-time in this paper.

  • PDF

Development of Neuro-Fuzzy-Based Fault Diagnostic System for Closed-Loop Control system (페푸프 제어 시스템을 위한 퍼지-신경망 기방 고장 진단 시스템의 개발)

  • Kim, Seong-Ho;Lee, Seong-Ryong;Gang, Jeong-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.494-501
    • /
    • 2001
  • In this paper an ANFIS(Adativo Neuro-Fuzzy Inference System)- based fault detection and diagnosis for a closed loop control system is proposed. The proposed diagnostic system contains two ANFIS. One is run as a parallel model within the model in closed loop control(MCL) and the other is run as a series-parallel model within the process in closed loop(PCL) for the generation of relevant symptoms for fault diagnosis. These symptoms are further processed by another classification logic with simple rules and neural network for process and controller fault diagnosis. Experimental results for a DC shunt motor control system illustrate the effectiveness of the proposed diagnostic scheme.

  • PDF

Controller Auto-tuning Scheme Improving Feedback System Performance in Frequency Domain (주파수역에서 피드백시스템의 성능향상을 위한 제어기 Auto-turning기법)

  • 정유철;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.144-147
    • /
    • 2000
  • Controller refinement scheme to improve the performance of a conventional system automatically in frequency domain is proposed. The controller automatic tuning method features using experimental frequency responses of the conventional closed-loop system the conventional controller, and the improved closed-loop system, instead of poorly modeled plant due to non-linearities and disturbances. The improved closed-loop system characteristics is automatically acquired by the conventional closed-loop system characteristics and the proposed performance index in system bandwidth. And the proper controller is realized by least squares approximation in frequency domain. To testify the usefulness of the approach, the path tracking control of robot arm is performed. Experimental results and analytic results are well-matched.

  • PDF

Model Updating Using the Closed-loop Natural Frequency (폐루프 공진 주파수를 이용한 모델 개선법)

  • Jung Hunsang;Park Youngjin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.801-810
    • /
    • 2004
  • Parameter modification of a linear finite element model(FEM) based on modal sensitivity matrix is usually performed through an effort to match FEM modal data to experimental ones. However, there are cases where this method can't be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to overcome the problems associated with the conventional method based on modal sensitivity matrix. We proposed the whole procedure of parameter modification using the closed-loop natural frequency data including the modal sensitivity modification and controller design method. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter estimation based on time-domain input/output data is provided to demonstrate the estimation performance of the proposed method.

Performance Analysis of Closed-Loop Production Systems with Random Processing Times and Machine Failures (랜덤가공시간과 기계고장이 존재하는 폐쇄형 생산시스템의 성능분석)

  • 백천현
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.47-52
    • /
    • 1999
  • In this paper we propose new approximate method for the performance analysis of closed-loop production system with unreliable machines and random processing times. The approximate method decomposes the production system consisting of K machines into a set of K subsystems, each subsystem consisting of two machines separated by a finite buffer. Then, each subsystem is analyzed by analyzing method n isolation. The population constraint of the closed-loop production system is taken into account by prescribing that the sum of average buffer level in the subsystems is equal to the number of customers in the closed-loop production system,. We establish a set of equations that characterizes unknown parameters of the servers in the subsystems. An iterative procedure is then used to determine the unknown parameters. Experimental results show that these methods provide a good estimation of the throughput.

  • PDF

Discrete controller order reduction with the closed-loop performance guaranteed (폐루프시스템의 성능을 보장하는 이산제어기 차수축소)

  • 오도창;정은태;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.24-32
    • /
    • 1997
  • This paper is on a discrete controller order reduction with the closed-loop stability and performance guaranteed. to achieve this, after finding the solutionsof two lyapunov inequalities and balancing the full order controller system, we find the reudced order controlers using the balanced truncation (BT) and the balanced singular perturbation approximation (BSPA). When the solutions of the two lyapunov inequalities exist, it is shown that the resulting controllers guarantee the closed-loop stability, and .inf.-norm error bounds are derived for the closed-loop performance region for the BT and in low frequency region for the BSPA. Finally, a numerical example is given to illustrate the validity of the proposed method.

  • PDF

Performance Analysis for Closed-Loop Production Systems with Unreliable Machines and Random Processing Times (불완전한 기계 및 랜덤가공시간을 갖는 폐쇄형 생산시스템의 성능분석에 관한 연구)

  • Kim, H.G.;Paik, C.H.;Cho, H.S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.240-253
    • /
    • 1999
  • In this paper we propose new approximate methods for the performance analysis of closed-loop production systems with unreliable machines and random processing times. Each approximate method decomposes the production system consisting of K machines into a set of K subsystems, each subsystem consisting of two machines separated by a finite buffer. Then, each subsystem is analyzed by three different analyzing methods in isolation. The population constraint of the closed-loop production system is taken into account by prescribing that the sum of average buffer levels in the subsystems is equal to the number of customers in the closed-loop production system. We establish a set of equations that characterize unknown parameters of the servers in the subsystems. An iterative procedure is then used to determine the unknown parameters. Experimental results show that these methods provide a good estimation of the throughput.

  • PDF